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Denne artikkelen kombinerer adferdsøkonomi og miljøøkonomi for å studere hva slags 

politikk myndighetene kan føre dersom politikere/velgere har såkalte tids-inkonsistente 

preferanser. Slike preferanser betyr typisk at når man sammenligner fremtidige 

goder/kostnader med kostnader/goder som blir realisert i dag, så vil man legge langt mer vekt 

på nåtid enn framtid enn det man ville gjort på et tidligere tidspunkt der begge de to datoene 

låg langt fram i tid. Med slike preferanser vil man for eksempel ha et ønske om å føre en 

bærekraftig politikk med lave utslipp i nær framtid, la oss si om 10-20 år, siden dette vil være 

viktig for miljø og klima om 100-200 år. Men når de 10-20 neste årene har gått vil man heller 

prioritere det som da er nåtid, og utsette den bærekraftige politikken.  

 

Når denne stadige utsettelsen tas med i beregningen vil det være optimalt med en politikk i 

dag som på en eller annen måte binder framtidige politikere til å velge en mer bærekraftig 

politikk. En slik binding kan oppnås gjennom teknologi. Dersom man nå investerer i såkalt 

grønn teknologi, som fornybare energikilder eller renseteknologi, så vil framtidige 

beslutningstakere selv finne det optimalt å kutte på utslipp da, siden kostnaden har blitt 

redusert ved hjelp av denne teknologien. Bedrifter og private investorer vil ikke ta hensyn til 

denne ekstragevinsten ved å binde opp framtidige beslutningstakere, så det vil være optimalt 

for dagens politikere å subsidiere slike investeringer---på tross av at det ikke finnes noen 

spillover-effekter i resonnementet ovenfor. Med andre ord vil tidsinkonsistende preferanser 

kunne forsvare subsidier til miljøvennlig teknologi utover det tradisjonelle argumentet som 

viser til eksternaliteter og spillover-effekter.   

 

Argumentet blir motsatt når det gjelder såkalt «brun teknologi» som er komplementært med å 

forurense eller forbruke/utvinne fossil energi: Slik teknologi må skattlegges dersom dagens 

politikere skal kunne påvirke framtidige beslutningstakere i bærekraftig retning.  

 

Artikkelen studerer også flere nivåer av teknologiske investeringer, og det vises at for såkalt 

grønn teknologi så vil optimale subsidier være høyere jo mer «fundamental» teknologien er. 

Grunnforskning burde subsidieres mer enn selve innstalleringen av vindmøller, for eksempel, 

siden mer grunnleggende teknologi/forskning påvirker framtidige beslutninger gjennom et 

større antall ledd (grunnforskning påvirker både investeringer i fornybar energi så vel som 

innstalleringen og den senere bruken av disse). 

 

Artikkelen er nå sendt inn til vurdering i et internasjonalt tidsskrift. 
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Abstract

Standard analyses of economic policy assume exponential discounting, even though
empirical and experimental evidence shows that preferences are time-inconsistent
and discounting is hyperbolic. When policy makers– or the voters they must
satisfy– apply smaller discount rates for long-term than for short-term decisions,
they benefit from investing in infrastructure and technologies that will influence fu-
ture decisions. This paper analyzes the equilibrium investment strategy and policy
as a function of the technology’s type and position in the production chain. The
strategic concern can be measured by the subsidy a sophisticated decision maker
would impose on a naive agent, or on a perfect market. Two main results are pro-
vided. First, I derive a formula for how the optimal investment subsidy depends on
the investment lags and the technology’s complementarity with future investments.
When applied to climate change, it implies that investments in "green" technology
should be subsidized while adaptation and "brown" technology should be taxed,
even when laissez faire is first best under exponential discounting. Second, I show
that fundamental technologies (i.e., those further upstream in the production chain)
should be invested in and subsidized to a larger extent. This result also reveals that
quasi-hyperbolic discounting is a poor approximation for strictly decreasing discount
rates.
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1. Introduction

The right way is to adopt policies that spur investment in the new technologies

needed to reduce greenhouse gas emissions more cost effectively in the longer

term without placing unreasonable burdens on American consumers and work-

ers in the short term.

President Bush’s Speech on Climate Change, April 16, 2008

Cutting emissions today in order to improve the future quality of life is the wrong way of

approaching climate change, according to President Bush’s 2008 speech. The right way

was to invest in technology that could be used to cut tomorrow’s emissions instead.1

Many projects generate costs and benefits for future years and generations. Reducing

emissions today generates a cleaner environment in the future; conserving nature now

makes it available for future users; extracting resources today reduces the amount available

later; investments in public infrastructure generate future benefits; and research is costly

today but creates knowledge we can build on later.

When evaluating whether such projects are worthwhile, we are faced with the funda-

mental question of how to compare costs and benefits that occur at different points in

time. This question is a deep and diffi cult one, and philosophers as well as economists

have struggled with it for centuries.

Over the last decades, our profession has settled on employing exponential discounting–

not because of its normative or positive justifications– but due to its elegance, tractability,

and resemblance to private investors’present-discounted value formula. Furthermore, ex-

ponential discounting leads to stationary or time-consistent preferences. However, apart

from the tractability of exponential discounting, there are few reasons to impose it as a

reasonable model of individual or political behavior. The lack of empirical and theoretical

foundations for exponential discounting will be reviewed in the next section. That review

supports the conclusion reached by Frederick at al. (2002:361) that "the collective evi-

1In his 2008 speech, President Bush also said: “there is a wrong way and a right way to approach
reducing greenhouse gas emissions. . . . The wrong way is to...demand sudden and drastic emissions cuts
that have no chance of being realized and every chance of hurting our economy. The right way is to set
realistic goals for reducing emissions consistent with advances in technology.”
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dence...seems overwhelmingly to support hyperbolic discounting." When individuals and

citizens have hyperbolic discount rates, then policy makers will also behave as they do,

both because they are such individuals themselves, and also because they are accountable

to voters with hyperbolic discount rates.

The purpose of this paper is to analyze the implications of time-inconsistent preferences

for technology choices, investments, and investment policies. Any action today, whether

it concerns investments in technology, capital, or knowledge, will inevitably affect future

investment decisions. The current sophisticated decision maker will thus have an incentive

to distort current investments in order to influence the choices made by her future self.

The optimal strategic distortion, which can be implemented or measured by a subsidy or

a tax on investments, will depend on the type of capital or technology to be invested in,

and its position in the production chain. The analysis derives two main results.

First, I show how investments in technology and capital that are complementary to

future investments should be subsidized, and how investments in strategic substitutes for

future investments should be taxed. An important policy implication is that so-called

"green" technology (which reduces the cost of pollution abatement) should be subsidized,

while so-called "brown" technology (e.g., drilling technology or investments in fossil-fuel-

dependent industries) should be taxed. This result holds even if we abstract from public

good problems, externalities, or technological spillovers.

Second, the investment policy also depends on the technology’s position in the pro-

duction hierarchy. If technologies are strategic complements, technologies that are further

upstream should be subsidized at a higher rate because they will have a multiplicative

impact on the subsequent steps in the production chain. In other words, basic research

should be subsidized at a higher rate than should investments in infrastructure, for ex-

ample.

These results hinge on the discount factors in interesting ways. Under exponential

discounting, the optimal subsidies are always zero (this will follow from the envelope

theorem). Although exponential discounting leads to laissez faire as the normative pol-

icy recommendation (if there is no market failure), this conclusion fails when discount

rates depend on the time horizon. Furthermore, the second result does not hold un-
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der quasi-hyperbolic discounting– which is therefore a poor approximation for hyperbolic

discounting.

The next section discusses the background and the literature on discounting, including

its foundations, empirical evidence, and critiques. Section 3 presents a simple model which

describes how the optimal policy depends on the type of technology (e.g., green vs. brown

technology), while Section 4, which contains most of the propositions, reveals how the

investment policy also depends on the technology’s position in the production chain.

Section 5 concludes.

2. Background and Literature

In the nineteenth century, the debate regarding how to evaluate future utility losses and

gains included a large number of factors, some psychological and many of them were

conflicting (Rae, 1834; Senior, 1836; Jevons, 1871; and Böhm-Bawerk, 1889). Ramsey

(1928) suggested maximizing a weighted sum of future utilities,

vt =
∞∑
τ=t

D (τ − t)uτ ,

where D (0) = 1 and D (τ) measures the weight of utility uτ , τ periods ahead, relative to

utility right now. Although the discount factor D (τ) was left unspecified, Paul Samuelson

(1937) suggested the now familiar formula for exponential discounting:

D (t) = δt =

(
1

1 + ρ

)t
≈ e−ρt,

where δ is the corresponding constant discount factor between subsequent periods and ρ

is the constant discount rate. With Koopman’s (1960) axiomatic foundation, exponential

discounting became the standard way of evaluating future gains and losses in economics.

To many, the appeal of exponential discounting is not that its assumptions regarding

individual behavior are reasonable but that it simplifies the analysis.2 In a seminal paper,

2Paul Samuelson himself had reservations when suggesting the exponential formulation, both as a
representation of an individual’s preference ("It is completely arbitrary to assume that the individual
behaves so as to maximize an integral of [this] form," Samuelson, 1937: 159), or as advice for a public
planner ("any connection between utility as discussed here and any welfare concept is disavowed," p.
161). Nevertheless, and "despite Samuelson’s manifest reservations, the simplicity and elegance of this
[exponential] formulation was irresistible" according to Frederick et al. (2002: 355-6).
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Strotz (1955-1956) explained why preferences are likely to be time-inconsistent and that

we, as a consequence, had to search for the best plan that would actually be followed.

Since then, we have seen an explosion of empirical and experimental evidence which

"seems overwhelmingly to support hyperbolic discounting."3 After all, our basic human

senses perceive relative differences: When two sound sources are both located nearby, the

closer sound is easier to hear; when they are both further away, it is easier to hear the

louder sound. From a distance, the larger of two mountains does indeed look larger than

the smaller one, but when they are both near, the mountain that looks larger is the one

that is closer. If our sense for time has the same characteristic, as experimental evidence

suggests that it does,4 then only the relative difference (the difference between t and, say,

t′, relative to t) will be important. In this case, the discount factor must be "hyperbolic"

in that utility at time t will be weighted by the discount factor:

D (t) =
1

1 + αt
, (2.1)

where α > 0 is a constant that can measure either impatience or the scale of time. With

this, the discount factor between period t and t− 1 is:

δt ≡
D (t)

D (t− 1)
= 1− α

1 + αt
,

which is concave and increasing in t, and approaching one as t grows.

David Laibson (1997) adopted a simpler approximation of (2.1), often referred to as

quasi-hyperbolic discounting:

D (t) = βδt if t > 0,

where both β < 1 and δ < 1. With such discount factors, the welfare at time t is:

vt = ut + β
∞∑

τ=t+1

δτ−tuτ .

3The quote is from the survey by Frederick et al. (2002: 361). For empirical evidence, see the survey
by Angeletos et al. (2001), or more recent research such as Paserman (2008), who find estimates of the
short-run annualized discount rate that range from 11 to 91 percent and a long-run discount rate of only
0.1 percent. Laibson et al. (2007) find that the short-term discount rate is 15 percent but the long-term
discount rate is 3.8 percent. In lab experiments, individuals often prefer a smaller benefit today to a
larger benefit tomorrow, but reverse the ranking if the two consecutive days are further into the future.
See, for example, Thaler (1981), Ainslie (1992), Benhabib et al. (2010), or Halevy (2015).

4There are also evolutionary arguments suggesting that humans may evolve and survive better if they
have so-called hyperbolic discounting functions (Dasgupta and Maskin, 2005).
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Other names for this formula are (β, δ)-discounting, quasi-geometric discounting, quasi-

exponential discounting, and sometimes, simply but misleadingly, hyperbolic discounting.

Although individuals apparently apply discount rates that decline in time, does this

imply that governments ought to do the same? There are four reasons for an affi rma-

tive answer. First, the government consists of individual policy makers who share these

preferences regarding the future, so it is inevitable that policy-makers will act in a time-

inconsistent way. Second, to be re-elected, the government must be accountable and

apply the same discount rates as the voters.5 Third, one can argue that a government

should– also from a normative perspective– discount future utility by using a discount

factor that increases in relative time: the extent to which future generations are impor-

tant, also morally, is already taken into account by the voters (Galperti and Strulovici,

2015). In fact, the formula for quasi-hyperbolic discounting, D (t) = βδt, was first sug-

gested by Phelps and Pollak (1968), who argued that it may represent "imperfect altru-

ism" between generations. More generally, time-inconsistent preferences follow naturally

when the current generation cares about the grandchildren’s welfare in addition to the

children’s.6 Finally, even if each individual had time-consistent preferences, collective de-

cisions would necessarily be time-inconsistent as long as the discount rates differed among

the individuals (Gollier and Zeckhauser, 2005; Jackson and Yariv, 2014; 2015).

There is a growing literature on policies in the presence of time inconsistency. For

example, hyperbolic discounters may retire too early (Diamond and Kőszegi, 2003), or

save too little, so the government can help the decision makers to commit by subsidizing

saving (Krusell et al., 2009 and 2010).7 Or, since hyperbolic discounters find it hard

5However, citizens may prefer that the government apply a lower discount rate than the citizens
themselves would (Caplin and Leahy, 2004).

6If parents are "thoughtful" (as in Barro, 1974), then the welfare of a generation is a weighted sum
of its own utility and the next generation’s welfare. We can then write welfare recursively as a weighted
sum of all future utilities, and the discount factor will be constant over time (leading to exponential
discounting). However, if today’s parents also care about the welfare of its grandchildren, then stationarity
will be violated and the effective discount rate will indeed decline in time (Harstad, 1999; Saez-Marti
and Weibull, 2005; Galperti and Strulovici, 2015). Note that the fact that the pure time preference
rate depends on the time horizon is orthogonal to the arguments by Gollier and Weitzman (2010) and
Weitzman (2001), who have shown that if the growth rate of consumption is uncertain, then it is optimal
to discount future consumption at a rate that is decreasing in time in order to reflect risk aversion and
the accelerating level of risk.

7See also Laibson and Harris (2001). In Bisin et al. (2015), it would be optimal to ban illiquid assets
or require balanced budget rules. On climate change, see Karp (2005), or Gerlagh and Liski (2013), who
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to quit smoking, the government could tax tobacco more (Gruber and Kőszegi, 2001).

But also individuals may try to commit their future selves by limiting the future choice

set (Gul and Pesendorfer, 2001), by signing up for saving plans which are costly to end

(Thaler and Benartzi, 2004), or by paying today the cost of attending the gym tomorrow

(DellaVigna and Malmendier, 2006).8

The present paper does not allow for any such pre-commitment to future policies.

When I refer to a subsidy, it is to one that is set today by the decision maker of today as

a simple way to account for how today’s investment will influence future investments, and

as a measure of this strategic concern. More importantly, I allow for a general class of

technology, and focus on how the type of that technology and its position in the produc-

tion chain determine the optimal (and equilibrium) investment strategy and policy. By

allowing discount factors to depend on time in a general way, the model encompasses ex-

ponential discounting, hyperbolic discounting, and quasi-hyperbolic discounting as special

cases.

3. Preliminary Results: Investments in Capital

3.1. Notation and Measures of Strategic Investments

Consider a single planner or decision maker playing a dynamic game against her future

self. If ut measures the momentary utility t periods from now, the objective today is to

maximize v0 ≡
∑∞

t=0D (t)ut, where D (0) = 1, while D (t) measures the weight on utility

at time t ≥ 0 compared to utility today. The discount factor between period t− 1 and t

is

δt ≡
D (t)

D (t− 1)
⇔ D (t) =

t∏
τ=1

δτ .

I will assume that δt ∈ (0, 1) is strictly increasing in t unless otherwise stated. (For

example, δt = δ is constant when considering exponential discounting.)

It is obvious that any action that increases every ut will be taken. The interesting

decisions are those that require the decision maker to trade off future gains against current

derive the optimal carbon tariffs in a setting with quasi-hyperbolic discounting.
8Nonsophisticated hyperbolic discounters may also be taken advantage of in the market: see Heidhues

and Kőszegi (2010) for an analysis of the credit card market, or, for a more general survey, Kőszegi
(2014).
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losses or, equivalently, vice versa. If an action a is costly today, it may nevertheless be

worthwhile if it increases future utility. If we assume differentiable utility functions, the

necessary first-order condition for an optimal interior a is:

−du0

da
=

d

da

∞∑
t=1

D (t)ut. (3.1)

If other decisions or investments might be made in the future, it is useful to distinguish

between the total derivatives and the partial derivatives. The total derivative d (·) /da in

(3.1) reflects the fact that when taking decision a, a sophisticated decision maker may

take into account the fact that the choice of a today may influence other, future choices,

that may in turn also influence utilities. If, in contrast, the decision maker did not try to

influence future choices, then the choice of a would instead solve:

−du0

da
=

∂

∂a

∞∑
t=1

D (t)ut. (3.2)

Of course, if the decision maker were time-consistent, then (3.1) and (3.2) would be

equivalent, since future choices would be optimal also from today’s point of view, and thus

there would be no reason to account for the fact that a will influence these future choices

(this follows from the envelope theorem). But when preferences are time-inconsistent,

then we can measure the strategic consideration when choosing a in the following way:

s∗ ≡
∑∞

t=1 D (t) dut/da∑∞
t=1 D (t) ∂ut/∂a

− 1. (3.3)

That is, when s∗ > 0, the investment level that is chosen according to (3.1) is strategically

large when the decision maker takes into account the fact that a influences future choices.

If s∗ < 0, the investments are instead strategically small when the effect on future decisions

is taken into account. In either case, s∗ measures the extent to which the optimal choice

of a is distorted because of the decision maker’s desire to influence future decisions, i.e.,

because of the time-inconsistent preference.

The starred superscript reflects the interesting feature that s∗ can also be interpreted

as the optimal subsidy if the actual investment is decentralized to a "naive agent," or, a

"perfect market," as long as the decision maker’s discount factors are shared. To see this,

note that a naive agent, with no desire to influence future choices, would invest according
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to (3.2) in the absence of any subsidy.9 Alternatively, (3.2) would measure investments

in a "perfect market," defined as a market in which investors obtain full property rights

to the direct revenues of their investments.10 If there were a large number of price-taking

investors, they would take as given the future price ∂ut/∂a and discount those revenues by

D (t); if there were a single investor able to price-discriminate perfectly, the investor would

capture the marginal revenue ∂ut/∂a for every t and discount them by D (t). However, if

the investment cost were subsidized by s, then either the market or the naive agent would

invest according to:

− (1− s) du0

da
=

∂

∂a

∞∑
t=1

D (t)ut ⇔

−du0

da
= (1 + s)

∂

∂a

∞∑
t=1

D (t)ut, if (3.4)

s ≡ 1

1− s − 1.

Here, s is equivalent to a subsidy on future revenues. Obviously, a subsidy on invest-

ment costs is equivalent to a subsidy on future revenues. Also, we can let an investment-

cost subsidy s be measured by s ≡ 1/ (1− s) − 1, so that we can write the equilibrium

condition as (3.4). The decision maker of today can implement her preferred a by ensuring

that (3.4) coincides with (3.1). This requires s = s∗, as it is given by (3.3). Furthermore,

this choice of s∗ is preferred by the decision maker if she considers the subsidies to be

simply transfers within the society with no real cost, except for the fact that the subsidy

may affect the choice of a.

Lemma 1: If the investment is made in a perfect market, or by a naive agent, the decision

maker implements her preferred decision with the subsidy s∗ given by (3.3).

Remark 1: On commitment. Note that there is no commitment to any future sub-

sidies. Instead of setting s∗, the decision maker can implement the same a with the
9A naive agent is, in contrast to the sophisticated decision maker, not aware of the time inconsistency

problem, and will thus (by the envelope theorem) not seek to influence any future decision. The distinction
between naive and sophisticated is further discussed by O’Donoghue and Rabin (1999).
10A complete set of competitive markets would be perfect in this sense. In fact, the statements referring

to a perfect market continue to hold as long as each investor is the full residual claimant to all direct
costs or benefits of her investment. With exponential discounting, the first welfare theorem implies that
the market equilibrium would be first best and there would be no need for any regulation.
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corresponding investment-cost subsidy s = 1− 1/ (1 + s∗). This subsidy is set today and

I assume it is impossible to commit to any future subsidies or policies. The only way to

partially commit is to take today’s decision a in such a way as to influence future choices.

Whether the decision maker sets a directly or by regulating the market or a naive agent,

we can let s∗ measure the equilibrium level of a and how it differs from the choice of a in

the absence of any strategic considerations.

3.2. A Simple Investment

To illustrate the notation and derive a benchmark comparison, consider a simple once-

and-for-all investment or action a generating a future benefit b (a) at the cost c (a) today.

If the benefit is realized ∆a periods from now, it is discounted by D (∆a). Thus, a decision

maker maximizes v = −c (a) +D (∆a) b (a). The necessary first-order condition is:

c′ (a) ≡ dc

da
= D (∆a)

db

da
. (3.5)

To ensure that we have interior solutions and that the second-order condition is satisfied,

let c (·) be increasing and convex and b (·) increasing and concave.

As a comparison, investors in a perfect market can invest today and earn the marginal

revenue ∂b (a) /∂a tomorrow. With the subsidy sa, the first-order condition is:

c′ (a)

1 + sa
= D (∆a)

∂b (a)

∂a
. (3.6)

A naive agent would invest in the same way.

As long as a does not influence any other future choices, then db/da = ∂b/∂a, so (3.5)

and (3.6) are equivalent for sa = 0. A naive agent or investors in a perfect market are

making the same decision that the decision maker would, so laissez faire works perfectly

fine.

Proposition 0: For the simple investment or action a, the decision maker invests ac-

cording to (3.5), or, equivalently, by satisfying (3.6) with sa given by

s∗a = 0.
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3.3. Investments in Capital

The investment or action a can have a large number of interpretations. The investment

can be in health, education, infrastructure, or pollution abatement, to mention some

examples. For some investments, it is reasonable that the cost of investing depends on

the level of capital or infrastructure. In other cases, it may be the later benefit of a

that depends on the level of capital or infrastructure. To capture the importance of such

capital, k, let the cost of investing a be written as c (a; k) and the benefit as b (a, k).11

To better explain and motivate the importance of k, it is useful to revert to the ap-

plication in which a measures pollution abatement. For this application, k may represent

one of (at least) three different types of capital:

Green capital is assumed to be complementary to pollution abatement. Such technol-

ogy can be cleaning technology or alternative energy sources; in either case, a larger stock

of green technology is a strategic complement to reducing pollution, and the marginal

cost of abating. So, ∂c (a; k) /∂a > 0 decreases in k, implying that ∂2c (a; k) /∂a∂k < 0.

The green capital does not (by assumption) affect the environmental harm directly, so

∂b (a, k) /∂k = 0.

Brown capital refers to drilling technologies or investments in industries that pollute.

Such capital may be beneficial in the sense that it increases the utility (∂c (a; k) /∂k < 0),

but a larger level of k also makes it costly to cut back on pollution. Thus, ∂2c (a; k) /∂a∂k >

0, meaning that a and k are strategic substitutes. The brown capital does not (by as-

sumption) affect the environmental harm directly, so again ∂b (a, k) /∂k = 0.

Adaptation capital refers to investments that enhance the economy’s ability to deal

with pollution. For example, one can invest in agricultural products that can cope with

pollution or climate change, or one can build infrastructure that is robust to pollution,

climate change, or sea-level rises. Such capital not only increases the future benefit

b (a, k), but also reduces the marginal environmental harm; in other words, a larger level

of k reduces the value of a so that ∂2b (a, k) /∂a∂k < 0. Such adaptation capital does not

(by assumption) affect the cost of abating, so ∂c (a; k) /∂k = 0.

11The use of semicolon in c (a; k) reflects the fact that k is sunk when a is chosen. When the benefit
b (a, k) is experienced, both variables are sunk.
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The level of k is given when a is decided upon. By differentiating (3.5), we can see

how the decision on a varies with the level of k:

da

dk
=

D (∆a) ∂
2b/∂a∂k − ∂2c/∂a∂k

∂2c/ (∂a)2 −D (∆a) ∂2b/ (∂a)2 ⇒ (3.7)

sign
(
da

dk

)
= sign

(
D (∆a)

∂2b (a, k)

∂a∂k
− ∂2c (a; k)

∂a∂k

)
.

Thus, da/dk > 0 for green capital, while da/dk < 0 for adaptation and brown capital.

Let ∆k measure the number of periods between the (one-shot) decision on k and the

decision on a. That is, ∆k may be the time it takes for the capital to be ready or built.

Further, let ck (k) be the cost of k. When k is decided upon, the decision maker takes into

account that the level of k affects c and b not only directly, but also indirectly through

the choice of a.

As a comparison, the effect on a would not be taken into account by a naive agent

or by a perfect market investing in k. In these cases, the choice of k would satisfy the

following first-order condition:

c′k (k)

1 + sk
= −D (∆k)

∂c (a; k)

∂k
+D (∆k + ∆a)

∂b (a, k)

∂k
, (3.8)

where sk represents a subsidy on k. The decision maker can implement her preferred level

of k by setting the appropriate sk. Even when the decision maker decides on k directly,

there exists some sk, referred to as s∗k, such that the decision maker’s preferred level of

k satisfies (3.8) when sk = s∗k. So, as mentioned above, s
∗
k can measure how much the

decision maker invests in k relative to a situation with time consistency, a naive agent, or

a perfect market.

Proposition 1: The equilibrium capital level k satisfies (3.8) with sk given by:

s∗k =

(
∆a∏
t=0

δt+∆k

δt
− 1

)
∂c (a; k) /∂a

−∂c (a; k) /∂k + (D (∆k + ∆a) /D (∆k)) ∂b (a; k) /∂k
· da
dk

(3.9)

Proof: The decision maker’s objective is to maximize vk (k) ≡ −ck (k)−D (∆k) c (a; k)+

D (∆k + ∆a) b (a, k). By taking the total derivative w.r.t. k, we get the first-order condi-
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tion:

v′k (k) ≡ −c′k (k)−D (∆k)

[
∂c (a; k)

∂k
+
∂c (a; k)

∂a

da

dk

]
+ D (∆k + ∆a)

[
∂b (a, k)

∂k
+
∂b (a, k)

∂a

da

dk

]
= 0⇔

c′k (k) = −D (∆k)
∂c (a; k)

∂k
+D (∆k + ∆a)

∂b (a, k)

∂k

+

[
D (∆k + ∆a)

∂b (a, k)

∂a
−D (∆k)

∂c (a; k)

∂a

]
da

dk
.

When substituting in for (3.5), we get:

c′k (k) = −D (∆k)
∂c (a; k)

∂k
+D (∆k + ∆a)

∂b (a, k)

∂k
+

[
D (∆k + ∆a)

D (∆a)
−D (∆k)

]
∂c (a; k)

∂a

da

dk
,

and when also (3.8) must hold, sk must be given by (3.9). The second-order condition

v′′k (k) < 0 holds when ck (k) is suffi ciently convex (see the proof of Proposition 2). Q.E.D.

The contribution of Proposition 1 is best illustrated by stating a number of corollaries.

Corollary 1:

(i) With exponential discounting, s∗k = 0.

(ii) If either ∆k = 0 or ∆a = 0, s∗k = 0.

(iii) Suppose ∆k∆a > 0. With quasi-hyperbolic discounting, (3.9) simplifies to:

s∗k =

(
1

β
− 1

)
∂c (a; k) /∂a

−∂c (a; k) /∂k + δ∆a∂b (a; k) /∂k
· da
dk
.

(iv) It is optimal to subsidize investments in green capital:

s∗k =

(
∆a∏
t=0

δt+∆k

δt
− 1

)
· ∂c (a; k) /∂a

−∂c (a; k) /∂k
· da
dk

> 0.

(v) It is optimal to tax investments in brown capital:

s∗k =

(
∆a∏
t=0

δt+∆k

δt
− 1

)
· ∂c (a; k) /∂a

−∂c (a; k) /∂k
· da
dk

< 0.

(vi) It is optimal to tax investments in adaptation capital:

s∗k =

(
1−

∆a∏
t=0

δt
δt+∆k

)
· ∂b (a; k) /∂a

∂b (a; k) /∂k
· da
dk

< 0.
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(vii) For green, brown, or adaptation capital, |s∗k| increases in ∆k and in ∆a. For any

given sum ∆k + ∆a, if δt is concave in t, |s∗k| is maximized when ∆k = ∆a.

The following numbered points discuss the corresponding parts of Corollary 1.

(i) In traditional settings where the decision maker has time-consistent preferences,

there is no need today for the decision maker to distort the choices of her future self.

So, if an investor captures the full future return of the investment, there is no need for

regulation. This confirms Proposition 0, which suggested that laissez faire is just fine.

(ii) Furthermore, if ∆k = 0, it takes no time to build the capital. It is then the

same decision maker selecting k and a and there is obviously no need to distort either

decision. Alternatively, if ∆a = 0, the decision maker choosing a gets the benefit herself

immediately and the level of a does not influence any future utility which the two selves

would evaluate differently.

(iii) When ∆k∆a > 0, assumed from now on, a time-inconsistent decision maker is

not satisfied with the future choice of a. Today’s decision maker would prefer a larger

investment a than the level that will actually be implemented by her future self, and the

choice of a can be influenced by sk. In general, the disagreement between the two selves,

and thus the optimal level of sk, will depend on every relevant δt. With quasi-hyperbolic

discounting, however, δt = δ for t > 1 and the formula for s∗k simplifies.

(iv) Regardless of whether discounting is quasi-hyperbolic, or whether the δt’s are

instead strictly increasing in t, it is optimal with s∗k > 0 for so-called green capital. For

this type of capital, a increases in k, and thus the decision maker prefers a strategically

large k in order to motivate a larger a in the future. When the decision maker herself

is deciding on k, then s∗k > 0 has the interpretation that she prefers a larger k than she

would have chosen either if she had taken the future choice of a as given, or if she did not

want or try to influence a. If the choice of k is left to the perfect market or to a naive

agent, s∗k > 0 means that it is optimal to subsidize today’s investment in k.

(v) For brown capital, a decreases in k. To motivate a larger a, which the decision

maker would prefer, it is necessary to reduce the investment in k today. Thus, the

decision maker benefits from investing strategically little in so-called brown capital, and

she benefits from taxing these kinds of investments. Note that the level of s∗k is always

14



proportional to da/dk, has the same sign as da/dk, and is zero when da/dk = 0.

(vi) The result for adaptation may seem provocative. Adaptation can certainly be

a good thing, in that it may be that ∂b (a, k) /∂k > 0. However, even a naive agent

or private investor will account for the value ∂b (a, k) /∂k, so this creates no reason to

strategically distort k. On the contrary, more investments in adaptation will reduce the

cost of polluting, and the level of abatement will thus be reduced as well. The decision

maker of today prefers a larger a in the future, and this can be achieved by strategically

reducing the level of adaptation capital.

(vii) When discount factors are strictly increasing in relative time, the decision maker’s

disagreement with her future self is larger if the next decision is made at a much later

point in time. Thus, the parenthesis in (3.9) is increasing in both investment lags. (This

is not true for quasi-hyperbolic discounting, however, since the disagreement then is not

increasing in the lags, and the parenthesis simplifies to 1/β − 1 > 0.)

If δt is a concave function of t, the disagreements are increasing at a decreasing rate

in t. Thus, conditional on the sum of the lags being the same, the optimal choice of |s∗k|

is at the largest when the two lags are equal.

Remark 2: Long-lasting stocks and investments in every period. For simplicity, the

decisions on a and k were treated above as one-shot decisions. It is straightforward,

however, to let an action at and an investment kt be decided on in every period t, if

just the cost and benefit of at depend on an earlier choice of capital, say, kt−1, and

not on kt. Then, the choice of at will still be given by (3.5) and dat/dkt−1 by (3.7).

Further, if a fraction q ∈ [0, 1] of kt survives to the next period, the choice of kt remains

independent of kt−1 if the cost of upgrading qkt−1 to kt is additively separable and given

by ck (kt) − h (qkt−1), for some function h. To see this, let c̃ (at; kt−τ ) be the actual cost

of action at, define c (at; kt−τ ) ≡ c̃ (at; kt−τ ) − h (qkt−1), and note that the analysis stays

unchanged. Remark 3 at the end of Section 4 discusses all this in more detail.

4. Main Results: Investments in Technologies

The previous section made a distinction between different types of investments at the

same stage in the production chain: while some capital types were complementary to the
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abatement decision, others could be strategic substitutes. The type of capital turned

out to be crucial for how the investments were strategically chosen so as to influence

future decisions. Green capital should be subsidized, according to Proposition 1, while

adaptation and brown capital should be taxed.

The second goal of this paper is to investigate how the strategic choice of investment

(or subsidy) also depends on the stage in the production chain. For example, while a larger

number of windmills will make it cheaper to reduce pollution, the production cost of each

windmill will depend on the amount of technology, knowledge, or basic research. The

fact that distinguishing between the stages may be important is evident when comparing

the decision on capital (Proposition 1) to the downstream decision on, say, abatement

(Proposition 0).

The first subsection below takes us another step upstream by analyzing investments

in technology. The second subsection generalizes by investigating a production chain of

arbitrary length and by showing how the strategic considerations (or the equilibrium sub-

sidy) depends on the investment’s location in the production chain. The final subsection

discusses so-called "stepping stone technologies" and derives a simple formula for how

such technologies are optimally chosen (or subsidized).

4.1. Investments in Technology

The production chain now has three stages. First, technology is invested upstream. Sec-

ond, it is used to produce capital. And third, that capital is used to invest in future

utility.

To recognize the similarity between the stages, I now switch notation by referring to

k1 instead of a, with c1 (k1; k2) as the investment cost (instead of c (k; a)). Capital is

referred to as k2 (instead of simply k) and the capital investment cost is c2 (k2; k3). The

cost of investing in technology, k3, is c3 (k3).

To focus on the chain, it is assumed that (i) ∆k = ∆a = 1, and (ii) while k3 influences

only the cost of investing in k2, k2 influences only the cost of investing in k1 (thus,

∂b/∂k2 = 0, so we can write b′ ≡ ∂b/∂a). Both assumptions (i)-(ii) can easily be relaxed

(see footnote 13).
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If we rewrite Propositions 0 and 1 using the new notation, we get:

s∗1 = 0, and

s∗2 =

(
δ2

δ1

− 1

)[
−∂c1 (k1; k2) /∂k1

∂c1 (k1; k2) /∂k2

]
dk1

dk2

, where

dk1

dk2

= −∂
2c1 (k1; k2)

∂k1∂k2

(
1

∂2c1/ (∂k1)2 − δ1∂2b′′

)
,

and the term in the brackets is simply the slope of the iso-cost curve.

When deciding on k3, a naive agent or the perfect market would invest as follows:

c′3 (k3)

1 + s3

= −δ1
∂c2 (k2; k3)

∂k3

. (4.1)

With time-inconsistent preferences, today’s decision maker is not satisfied with the

future choices of k2 and k1 and, in order to influence these choices, it may be optimal to

distort today’s investments in k3. To see how k3 influences k2, we can simply differentiate

the first-order condition for k2 to show that the cross-derivative is, again, crucial:

dk2

dk3

= −∂
2c2 (k2; k3)

∂k2∂k3

(
1

−v′′
2

)
,

where v′′
2
< 0 is the second-order condition when k2 is chosen.12 The influence of k3 on k1

is given by the product of dk2/dk3 and dk1/dk2.

Just as in the previous section, we can measure the decision maker’s decision on k3,

relative to her choice in the absence of the strategic concerns, by deriving the level of s3

which would ensure that (4.1) is in line with the decision maker’s preferred level.

Proposition 2: The equilibrium technology level k3 satisfies (4.1) with sk given by:

s∗3 =

(
δ2

δ1

− 1

)[
−∂c2 (k2; k3) /∂k2

∂c2 (k2; k3) /∂k3

]
dk2

dk3

+ δ2 (δ3 − δ2)

[
− ∂b/∂k1

∂c2 (k2; k3) /∂k3

]
dk1

dk2

dk2

dk3

.

(4.2)

Proof: The decision maker prefers the k3 solving the total derivative:

c′3 (k3) = −D (1)
∂c2 (k2; k3)

∂k3

−D (1)
∂c2 (k2; k3)

∂k2

dk2

dk3

−D (2)
∂c1 (k1; k2)

∂k2

dk2

dk3

−D (2)
∂c1 (k1; k2)

∂k1

dk1

dk2

dk2

dk3

+D (3) b′
dk1

dk2

dk2

dk3

.

12From the proof of Proposition 1, we can simplify to:

v′′2 ≡
∂v2 (k2; k3)

(∂k2)
2 ≡ −∂c2 (k2; k3)

(∂k2)
2 − δ1

[
∂c1 (k1; k2)

∂k2
+
∂c1 (k1; k2)

∂k1

dk1
dk2

]
+D (2)

[
b′
dk1
dk2

]
< 0.
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This can be combined with the first-order condition for k1, ∂c1 (k1; k2) /∂k1 = δ1b
′, and

the first-order condition for k2,

∂c2 (k2; k3)

∂k2

= −D (1)
∂c1 (k1; k2)

∂k2

−D (1)
∂c1 (k1; k2)

∂k1

dk1

dk2

+D (2) b′
dk1

dk2

⇒

∂c1 (k1; k2)

∂k2

= −∂c2 (k2; k3)

D (1) ∂k2

− ∂c1 (k1; k2)

∂k1

dk1

dk2

+
D (2)

D (1)
b′
dk1

dk2

.

in order to get:

c′3 (k3) = −D (1)
∂c2 (k2; k3)

∂k3

−D (1)
∂c2 (k2; k3)

∂k2

dk2

dk3

−D (2)
∂c1 (k1; k2)

∂k1

dk1

dk2

dk2

dk3

−D (2)

[
−∂c2 (k2; k3)

D (1) ∂k2

− ∂c1 (k1; k2)

∂k1

dk1

dk2

+
D (2)

D (1)
b′
dk1

dk2

]
dk2

dk3

+D (3) b′
dk1

dk2

dk2

dk3

= −δ1
∂c2 (k2; k3)

∂k3

+ (δ2 − δ1)
∂c2 (k2; k3)

∂k2

dk2

dk3

+ (δ3 − δ2)D (2) b′
dk1

dk2

dk2

dk3

.

Together with (4.1), we get (4.2). Q.E.D.

Note that the term in the first bracket in (4.2) is simply the slope of the iso-cost curve.

The essence of the proposition is illustrated in the following corollary. To exemplify the re-

sult, it is natural to define "green technology" as technology that is complementary to the

investment in green capital, and "brown technology" as technology that is complementary

to the investment in brown capital.

Corollary 2:

(i) With exponential discounting, s∗3 = 0.

(ii)With quasi-hyperbolic discounting, the second term in (4.2) is zero, so s∗3 can be written

analogously to s∗2:

s∗n =

(
δ2

δ1

− 1

)[
−∂cn−1 (kn−1; kn) /∂kn−1

∂cn−1 (kn−1; kn) /∂kn

]
dkn−1

dkn
, n ∈ {2, 3} .

(iii) For green technology, both terms in (4.2) are positive, so s∗3 > 0.

(iv) For brown technology, the first term in (4.2) is positive, the second negative, and

s∗3 > 0 if and only if
dk1

dk2

(δ3 − δ2) < −∂c2 (k2; k3) /∂k2

b′
δ2 − δ1

δ1δ2

.

Just as before, the contribution of the proposition is best illustrated by discussing

its corollaries. The following four numbers refer to the corresponding numbered parts of

Corollary 2:
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(i) It is easy to check that with exponential discounting, both parts in (4.2) are zero.

Intuitively, if the decision maker were time-consistent, she would be perfectly satisfied

with her own future choices of k2 and k1. She would have no desire to distort these

choices and thus (by the envelope theorem) she would prefer an amount of technology

which took into account only the direct cost-savings. The perfect market would then

invest optimally and there would be no need for regulation.

(ii) With time-inconsistent preferences, the decision maker disagrees with the future

choice of k2. Thus, k3 may be chosen, or distorted, in order to influence and increase the

investment in k2. If the cross-derivative of c2 (k2; k3) is negative, so that k3 is a strategic

complement to the investment in k2, then the current decision maker has an incentive to

invest strategically more in k3 in order to motivate a larger investment in k2. The optimal

investment in k3 is larger if the current decision maker disagrees strongly with her future

self. With quasi-hyperbolic discounting, this disagreement is larger if β is small. For this

case, note the similarity between s∗3 and s
∗
2; we see exactly the same forces at work. For

example, if technology k3 is complementary to k2, then k3 requires a subsidy just as k2

did when k2 was complementary to k1.

Interestingly, when we derive s∗3 for the case with quasi-hyperbolic discounting, it is

only important whether k2 increases or decreases in k3. It is irrelevant whether the capital

k2 is itself green or brown (i.e., whether k2 increases or decreases k1). The explanation for

the irrelevance of the capital type is the following. Although the current decision maker

disagrees with her future self regarding the appropriate level of investments k2, these two

selves agree perfectly when trading off utilities between two later dates. With quasi-

hyperbolic discounting, the discount factor of utility at time t + 1 relative to time t is δ

whenever t > 1. Thus, the decision maker choosing k3 agrees with the decision maker

choosing k2 regarding the need to influence the decision maker selecting k1.

(iii) When the discount factor δt is strictly increasing in t, however, the conclusions

are quite different. Then, the decision maker investing in k3 also seeks to raise k1, and

this can be done by strategically deciding on k3 or s3. In particular, for green technology,

complementary to green capital, the decision maker invests strategically more in k3 for

two reasons, and the expression for s∗3 thus consists of two positive terms.
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(iv) For brown technology, however, we know that k1 decreases when the level of brown

capital, k2, increases. Therefore, the second term of s∗3 is negative, while the first term is

positive. It is certainly possible that s∗3 < 0 if the second term dominates the first, positive

term. This will be the case, for example, when the degree of substitutability between k2

and k1 is particularly large (thus, when dk1/dk2 is large). In this case, the motivation

to subsidize investments in technology in order to motivate larger capital investments is

outweighed by the fear that the capital stock will subsequently lead to more emissions.

Note that for both green and brown technology, the second term of s∗3 has the same

sign as s∗2 if technology and capital are strategic complements (i.e., when dk2/dk3 > 0).13

4.2. The Supply Chain of Technologies

The analysis above suggests that for investment policies it is crucial to determine the

technology’s position in the production hierarchy. While the final investment stage before

consumption did not need any regulation, investments in complementary green capital are

subsidized. Furthermore, the investment in green technology will be subsidized at a rate

which consists of two positive terms rather than just one, and its first term corresponds

to the optimal subsidy on investments in capital. These comparisons suggest that the

optimal subsidy for complementary investments further upstream may have a tendency

to be larger and more complex.

To generalize the analysis in Section 4.1, assume now that there are N technology

stages, indexed by n ∈ {1, .., N}. The investment cost for technology n is given by

cn (kn; kn+1), if we take kN+1 as exogenously given. To streamline notation, we may also

take k0 as given when defining c0 (k0; k1) ≡ −b (k1), so that the decision maker investing

13The result can easily be generalized to a setting in which the investment kn takes time ∆n to be
developed, n ∈ {1, 2, 3}, and if k2 influences the benefit of k1, through b (k1, k2). In this case, the optimal
technology investment is given by:

s∗3 = s3 + s3, where

s3 ≡ ∂c2/∂k2
−∂c2/∂k3

[
D (∆3 + ∆2)

D (∆3)D (∆2)
− 1

]
dk2
dk3

, and

s3 ≡ ∂c2/∂k2
−∂c2/∂k3

[
D (∆3 + ∆2 + ∆1)D (∆2)−D (∆3 + ∆2)D (∆2 + ∆1)

D (∆2)D (∆3) [D (∆2 + ∆1)−D (∆2)D (∆1)]

](
∂b

∂k2
+

∂b

∂k1

dk1
dk2

)
dk2
dk3

.
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kn solves the following problem:

max
kn

n∑
j=0

−D (n− j) cj (kj; kj+1) . (4.3)

While I here will simplify and assume that the decision maker invests in only one kn, n ∈

{1, ...N}, at each point in time, the analysis is unchanged if an entire vector (k1,t, ..., kN,t)

is chosen at each time t (see Remark 3 at the end of this section).

To simplify notation, let pn refer to the willingness to pay for kn in the next period:

pn ≡ −
∂cn−1 (kn−1; kn)

∂kn
.

With this definition, we can write c′n (kn; kn+1) ≡ ∂cn (kn; kn+1) /∂kn to simplify notation

further. Inserted into the results derived already, we can write:

s∗1 = 0,

s∗2 = (δ2 − δ1)
p1

p2

dk1

dk2

, and

s∗3 = (δ2 − δ1)
p2

p3

dk2

dk3

+
[
(δ2 − δ1)2 + δ2 (δ3 − δ2)

] p1

p3

dk1

dk3

.

To solve the model with n stages, note that with a subsidy sn, the market, or a naive

agent, will invest according to:

c′n (kn; kn+1)

1 + sn
= δ1pn. (4.4)

The decision maker, however, will take into account that the choice of kn influences

the next choice of kn−1, and so on. In other words, the decision maker’s preferred level of

kn may satisfy (4.4) only for some sn 6= 0.

When the decision maker selects kn or, equivalently, sn, then she may anticipate that

her later choices, such as the choice of kn−1 or sn−1, will also be optimally selected at

that stage. However, the following formula for the optimal sn does not require sj to be

optimal for j < n, since the formula states the current decision maker’s optimal choice of

sn quite generally, regardless of what the downstream investments or subsidies actually

are:

s∗n =
n−1∑
j=1

(
δj+1

δ1

− 1− sn−j
)
D (j)

pn−j
pn

dkn−j
dkn

. (4.5)
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Proposition 3: For any n ∈ {1, ..., N}, (4.5) defines:

(i) the optimal sn for arbitrary sj, j ∈ {1, .., n− 1}, and

(ii) the optimal sn recursively, if sj, j ∈ {1, ..., n− 1}, are also optimally chosen.

Proof: Maximizing (4.3) with respect to kn is directly giving the first-order condition:

v′n (kn; kn+1) ≡ d

dkn

n∑
j=0

−D (n− j) cj (kj; kj+1) = 0⇔

c′n (kn; kn+1) = −
n−1∑
j=0

D (n− j) d

dkn
cj (kj; kj+1)

= −δ1pn −
n−1∑
j=1

D (n− j) ∂

∂kj
[δn−j+1cj−1 (kj−1; kj) + cj (kj; kj+1)]

dkj
dkn

. (4.6)

If we replace n with j in (4.4) and substitute into the above equation, we get:

c′n (kn; kn+1) = −δ1
∂cn−1 (kn−1; kn)

∂kn

−
n−1∑
j=1

D (n− j)
[
δn−j+1

∂

∂kj
cj−1 (kj−1; kj) +

(
−δ1 (1 + sj)

∂

∂kj
cj−1 (kj−1; kj)

)]
dkj
dkn

= δ1pn +
n−1∑
j=1

D (n− j) [δn−j+1 − δ1 (1 + sj)] pj
dkj
dkn

.

With this, s∗n can be derived by a comparison to (4.4), or directly from (3.3):

s∗n =
δ1pn +

∑n−1
j=1 D (n− j) [δn−j+1 − δ1 (1 + sj)] pjdkj/dkn

δ1pn
− 1

=
n−1∑
j=1

D (n− j)
[
δn−j+1

δ1

− (1 + sj)

]
pj
pn

dkj
dkn

=

n−1∑
i=1

D (i)

[
δi+1

δ1

− (1 + sn−i)

]
pn−i
pn

dkn−i
dkn

.

The second-order condition is v′′n ≡ ∂v′n (kn; kn+1) /∂kn < 0, which must hold, and it

does hold if cn is suffi ciently convex in kn. By differentiating the first-order condition

v′n (kn; kn+1) = 0 w.r.t. kn+1, we get:

dkn
dkn+1

= −∂
2cn (kn; kn+1)

∂kn∂kn+1

(
1

−v′′n

)
, (4.7)
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and dkn−i/dkn =

n∏
j=n−i+1

(dkj−1/dkj). Q.E.D.

Thus, the expression for s∗n is the sum of n−1 terms. The terms inside the parentheses

are zero if discounting is exponential and if sj = 0 for every j < n; so, in this case, s∗n = 0,

as well. If we had sj = 0 for j < n and discount factors increased in t, then every

parenthesis would be strictly positive. Each parenthesis is multiplied with the positive

discount factor D (j), and the positive price ratio pn−j/pn−1, so the sign of each term

depends on the sign of dkn−j/dkn. If all technologies are strategic complements (in that a

larger kn reduces the cost of kn−1) then dkn−j/dkn > 0. In this case, s∗n would be the sum

of n − 1 positive terms, suggesting that s∗n may have a tendency to increase in n. This

conjecture will be further explored in the rest of this section.

In equilibrium, sj for j < n will be given by the same formula, (4.5). In this case,

(4.5) is a recursive formula that pins down every sn and thus every investment level.14

An interesting corollary can be derived by assuming that at least the next sn−1 is

set according to Proposition 3. This sn−1 can then be substituted into (4.5). For this

corollary, we do not need to assume that the sj’s further downstream (j < n− 1) are also

optimally chosen (although, of course, they may be, and, in equilibrium, they will be).

Corollary 3: Suppose sn−1 is given by (4.5). Regardless of whether sj, j ∈ {1, ..., n− 2},

is optimally or arbitrarily chosen, the following obtain:

(i) With exponential discounting, s∗n = 0.

(ii) With quasi-hyperbolic discounting, s∗n consists of the single term accounting for the

effect on kn−1:

s∗n =

(
δ2

δ1

− 1

)[
−∂cn−1/∂kn−1

∂cn−1/∂kn

]
dkn−1

dkn
.

(iii) With strictly increasing discount factors, s∗n is the sum of n− 1 terms:

s∗n =

(
δ2

δ1

− 1

)[
−∂cn−1/∂kn−1

∂cn−1/∂kn

]
dkn−1

dkn
(4.8)

+

n−1∑
i=2

[
δi
δ1

(δi+1 − δ2)− (δi − δ2) (1 + sn−i)

]
D (i− 1)

pn−i
pn

dkn−i
dkn

.

14The equilibrium levels can be found by first applying the formula to k1, or s1, which will give us
s∗1 = 0. By substituting in for this value of s1, we can derive s∗2, and so on.
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Proof: If we replace n with n− 1 in (4.6) and rewrite, the f.o.c. for kn−1 becomes:

−∂cn−2 (kn−2; kn−1)

∂kn−1

=
c′n−1 (kn−1; kn)

δ1

(4.9)

+
n−2∑
j=1

D (n− j − 1)

δ1

[
δn−j

∂cj−1 (kj−1; kj)

∂kj
+
∂cj (kj; kj+1)

∂kj

]
dkj
dkn−1

.

Also, note that we can rewrite (4.6) to:

c′n (kn; kn+1) = −δ1
∂cn−1 (kn−1; kn)

∂kn
−
[
D (2)

∂cn−2 (kn−2; kn−1)

∂kn−1

+ δ1
∂cn−1 (kn−1; kn)

∂kn−1

]
dkn−1

dkn

−
n−2∑
j=1

[
D (n− j + 1)

∂cj−1 (kj−1; kj)

∂kj
+D (n− j) ∂cj (kj; kj+1)

∂kj

]
dkj
dkn

.

This equation becomes, after substituting in with (4.9):

c′n (kn; kn+1) = −δ1
∂cn−1 (kn−1; kn)

∂kn
−
[
−D (2)

c′n−1 (kn−1; kn)

δ1

+ δ1
∂cn−1 (kn−1; kn)

∂kn−1

]
dkn−1

dkn

−
n−2∑
j=1

 (D (n− j + 1)− D(2)D(n−j)
D(1)

)
∂cj−1(kj−1;kj)

∂kj

+
(
D (n− j)− D(2)D(n−j−1)

D(1)

)
∂cj(kj ;kj+1)

∂kj

 dkj
dkn

= δ1pn + (δ2 − δ1) c′n−1 (kn−1; kn)
dkn−1

dkn

+
n−2∑
j=1

D (n− j − 1)

[
δn−j (δn−j+1 − δ2) pj − (δn−j − δ2)

∂cj (kj; kj+1)

∂kj

]
dkj
dkn

.

To ensure that also (4.4) holds, sn must be optimal and given by:

s∗n =

(
δ2

δ1

− 1

)
c′n−1 (kn−1; kn)

pn

dkn−1

dkn

+
n−2∑
j=1

[
δn−j
δ1

(δn−j+1 − δ2)− (δn−j − δ2) (1 + sj)

]
D (n− j − 1)

pj
pn

dkj
dkn

,

which we can rewrite to (4.8). Q.E.D.

Parts (ii) and (iii) reveal that there is a dramatic difference between quasi-hyperbolic

discounting and strictly increasing discount factors. With quasi-hyperbolic discounting,

the expression for s∗n consists of only one single term, and that term is written equivalently

for every n > 1. The explanation is the following: On the one hand, the decision maker is

time-inconsistent and she prefers to subsidize investments that are complementary to the
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choice of kn−1, in order to influence the decision maker at that next stage to invest more.

That decision maker, in turn, disagrees with the decision maker who decides on kn−2.

The decision maker deciding on kn and the decision maker deciding on kn−1 both agree on

how much more the decision maker deciding on kn−2 ought to invest. The disagreement

between the first two decision makers is limited to the choice of kn−1, thanks to discount

factors that are constant after the first increase from βδ to δ, since δt = δ∀t > 1. In

contrast, when discount factors are strictly increasing in t, then s∗n consists of n−1 terms.

This comparison reveals that quasi-hyperbolic discounting is not a good approximation

for hyperbolic discounting when studying production-chain investments.

4.3. Stepping Stone Technologies

As illustrated by Proposition 3, the optimal subsidy consists of a number of terms that

equal the technology’s rank in the production chain. This does not prove, of course, that

the subsidy is larger for more fundamental (or more "upstream") technologies, but there

might be such a tendency for complementary technologies.

To investigate this claim, consider now what I will refer to as "stepping stone tech-

nologies." For such technologies, each stage is the stepping stone for the next. The larger

is one stepping stone, kn+1, the larger is also kn, for any given investment cost at stage n.

Thus, the cost of investing in kn can be written as cn
(
kn − φn+1kn+1

)
. Without loss of

generality, we can let φj = 1 for any j ∈ {1, ..., N}.15 With this, technology kn+1 becomes

a perfect complement to kn: one more unit of kn+1 makes it possible to also raise kn by

one unit, changing neither the cost nor the marginal cost of investing in kn.

The study of stepping stone technologies can be motivated in several ways. One

motivation is that these technologies capture quite well the way in which environmentally

friendly technologies enter the production chain. The amount of energy that can be

generated by renewable energy sources reduces, one by one, the amount of greenhouse gas

15If the true investment costs were cn
(
kn − φn+1k̃n+1

)
, and the technology level k̃n+1 could be invested

in at cost c̃n+1
(
k̃n+1 − φn+2k̃n+2

)
, then we could simply define kn+1 ≡ φn+1k̃n+1 and let the investment

cost for kn+1 be cn+1
(
kn+1 − φn+2φn+1k̃n+2

)
≡ c̃n+1

(
kn+1/φn+1 − φn+2k̃n+2

)
. In an analogous way we

can eliminate φn+2φn+1 and write cn+1 (kn+1 − kn+2) by defining kn+2 ≡ φn+2φn+1k̃n+2 and redefining
cn+2 (·), and so on.

25



that enters the atmosphere, for any given level of energy consumption. For this reason,

stepping stone technologies have already been used in other studies of climate change.16

Proposition 4: For stepping stone technologies, where cn (kn; kn+1) = cn (kn − kn+1),

the equilibrium kn satisfies (4.4) with the following sn ≥ 0, increasing in n:

s∗n =
δn
δ1

− 1.

Proof: From (4.7) we have dkn/dkn+1 = c′′n/c
′′
n = 1. Thus, the decision maker’s first-order

condition simplifies to c′n = D (n). Combined with (4.4), we get s∗n = D (n) /δ1pn − 1.

But pn = −∂cn−1 (kn−1 − kn) /∂kn = ∂cn−1 (kn−1 − kn) /∂kn−1, which equals D (n− 1).

Thus, s∗n = D (n) /δ1D (n− 1)− 1 = δn/δ1 − 1. Q.E.D.

Just as before, the subsidy is zero at the last stage. If discounting is exponential, the

subsidy is zero at every stage. And, as a confirmation of Corollary 3, the subsidy is indeed

constant in n under quasi-hyperbolic discounting, but increasing in n if discount factors

are strictly increasing in relative time.

Corollary 4:

(i) With exponential discounting, or if n = 1, then s∗n = 0.

(ii) With quasi-hyperbolic discounting, s∗n = 1/β − 1 > 0 is constant for all n > 1.

(v) With strictly decreasing discount rates, s∗n is strictly increasing in n.

(iv) With hyperbolic discounting,

s∗n = α

(
1− 1 + α

1 + αn

)
.

Figure 4.1 illustrates Corollary 4: The production stage is measured at the horizontal

axis. The solid line measures equilibrium investments, or, in fact, the marginal investment

cost, c′n (·) = D (n) =

n∏
i=1

δi, at each stage in the production chain. The lower dashed

line similarly measures investments under laissez faire, or, alternatively, if a naive agent

were to invest at all stages: then, c′n (·) = δn1 . The upper dashed line is in the same way

16See, for example, Harstad (2012) or Battaglini and Harstad (2016). The term "stepping stone tech-
nology" is not used in those papers, even though the technology is a perfect substitute for reducing
consumption, as assumed here.
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Figure 4.1: In equilibrium (solid line), more is spent on upstream investments relative to
downstream investments, regardless of whether we compare to laissez faire, naive invest-
ments, exponential discounting, or investments under commitment.

measuring investment expenditures at each stage under commitment, assuming that the

decision maker deciding on kN could commit to how much to invest in all future stages: In

this case, investments would be larger and given by c′n (·) = D (N) /D (N − n) =
N∏

i=N−n
δi.

Finally, the dotted line measures the investment expenditures under exponential discount-

ing, for some fixed discount factor δ ∈
(
δ1,

N
√
δ1 · δ2 · ...δN

)
. Relative to all these three

benchmarks, the equilibrium investment expenditures are biased toward the investments

that are further upstream, and away from the downstream investments. In other words,

with time-inconsistent preferences, more of the budget is spent on basic research and the

development of fundamental technology, whether the comparison is to a setting with time

consistency, commitment, the investments of a naive agent, or the investments in a perfect

market under laissez faire.

Remark 3: Long-lasting stocks and investments in (k1,t, k2,t, ..., kN,t) in every period t.

In the analysis above, (a) the decision on kn was, for simplicity, taken before the decision

on kn−1, and (b) the stock kn played no role thereafter (it depreciated completely). The

results do not hinge on these assumptions, however, and both of them can be relaxed.
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Figure 4.2: Maximizing the vector (k1,t, ..., kN,t) can be separated into N independent
maximization problems.

First, to relax (a), suppose that at every time t the decision maker decides on the vector

kt = (k1,t, k2,t, ..., kN,t), receives the momentary utility ut = −
∑N

n=0 cn (kn,t; kn+1,t−1), and

seeks to maximize vt =
∑∞

t=tD (τ − t)uτ . By inserting the expression for uτ and re-

arranging, we can write the objective as:

vt = −
N∑
n=0

(
n∑
j=0

D (n− j) cj (kj,t+n−j; kj+1,t+n−j−1)

)

−
∞∑
τ=1

N∑
j=0

D (N − j + τ) cj (kj,t+N−j+τ ; kj+1,t+N−j+τ−1) .

The final term captures future payoffs that are independent of kt. In the first term, the

effect of kn,t is contained in each parenthesis, and the term in each parenthesis is identical

to (4.3), except that time subscripts are added. Thus, the problem of maximizing vt with

respect to kt consists of N maximization problems, each identical to one studied above.

The intuition for this separation is illustrated in Figure 4.2.

We can also relax (b) and allow kn to depreciate at rate 1− qn ∈ [0, 1]. The separation

above will fail if the choice of kn,t will influence not only kn−1,t+1, but also kn,t+1, and

therefore kn−1,t+2, and so on. These multiple links would vastly complicate the analysis.

However, the sign of dkn,t+1/dkn,t is not necessarily positive and it is zero if, as in Re-

mark 2, the cost of upgrading to kn,t is assumed to be additively separable and given by

c̃n (kn,t; kn+1,t−1) − hn (qnkn,t−1), for some function hn. If we account for the cost-saving
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hn (qnkn,t−1) when defining the cost of investing in kn−1,t, then we can leave the analysis

above unchanged by using this definition:

cn (kn,t; kn+1,t−1) ≡ c̃n (kn,t; kn+1,t−1)− hn+1 (qn+1kn+1,t−1) .

5. Conclusions

There is a large amount of evidence indicating that individuals have time-inconsistent

preferences and behave as if they are more patient regarding long-term decisions than

for short-term decisions. Governments and policy makers will also have these preferences,

both because they are citizens themselves, and because they must be accountable to voters

with time-inconsistent preferences.

To study the public policy consequences of time-inconsistent preferences, this paper

analyzes models of investments in capital or technology and the associated investment

policies. The current decision maker can influence future investment choices by strategi-

cally choosing investments today. A measure of the strategic concern is the subsidy the

decision maker would impose on today’s investment if the actual decision were (perhaps

hypothetically) made in a perfect market or by a naive agent. A time-consistent policy

maker would see no need to influence future decisions, and the optimal subsidy would

then be zero. With more realistic discount factors that increase in relative time, however,

I derive two important results.

First, the subsidy will depend on the type of capital or technology to be invested in.

In particular, the current decision maker has an incentive to subsidize or invest more in

capital or technologies that are complementary to future investments, but to tax or invest

less in technologies that are strategic substitutes for future investments. This result

has important policy implications for environmental policy, for example. Even when

one abstracts from pollution externalities and technological spillovers, it is optimal to

subsidize investments in "green" capital or technology but it is optimal to tax investments

in "brown" capital or technology. Investments in adaptations to climate change are a

strategic substitute to pollution abatement and, therefore, the current decision makers

benefit from taxing such investments.
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Second, the optimal policy will depend on the position of the technology in the pro-

duction chain. When upstream technology is a strategic complement to the development

of downstream technology or capital, then it is often optimal to provide a larger subsidy

to more upstream technologies, i.e., to more basic research. The reason is that upstream

technologies have a multiplicative effect on the sequence of future investment decisions

which the current policy maker would like to influence.

This paper takes only a few small steps toward an understanding of how governments

may want to influence or regulate strategic investments in the presence of time inconsis-

tency. Although the literature on this topic is still limited, I believe it will and should

be vastly expanded in the coming years for two reasons. First, the fields of political

economics and behavioral economics are rapidly growing; Second, public decisions about

long-term problems– such as climate change– are receiving increasing attention, and it

is for such long-term decisions that time inconsistency and declining discount rates will

have the most dramatic policy consequences.
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