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Sammendrag 
Energieffektivisering i husholdningene ikke er god klimapolitikk, viser denne studien. Faktisk øker de 

samlede norske CO2-utslippene om det settes et tak på husholdningenes energibruk eller 

energiintensitet. 

  

Ambisiøse mål 

Energieffektivisering står sentralt i EUs og Norges vei mot lavutslippssamfunnet. Norge har nylig 

knyttet sine klimaambisjoner til EUs 2030-målsettinger. Innen 2030 er EUs mål å:  

 Redusere utslippene av klimagasser med 40 prosent i forhold til 1990-nivået  

 Øke fornybarandelen i energibruk til 27 prosent  

 Øke energieffektiviseringen med 27 prosent  

Denne studien ser på virkninger av å gjennomføre energieffektiviseringsmål i norske husholdninger 

og hvordan dette samspiller med andre klimapolitiske mål og virkemidler. Foreløpig er ikke EUs 

målsetting om 27 prosents energieffektivisering blitt helt konkretisert. Derfor ser vi på to ulike mål for 

effektivisering av energibruken i boliger: et tak på energibruken og et tak på energiintensiteten, det vil 

si forholdet mellom bruken av energi i boligen og bruken av selve boligen. Husholdningene kan 

redusere energiintensiteten ved å investere i for eksempel bedre isolering eller nye vinduer. 

Energibruken kan også kuttes ved å redusere boligkonsumet, for eksempel flytte til nye boliger med 

mindre areal.   

 

Ulike mål og virkemidler motvirker hverandre 

For å nå de ambisiøse målene introduseres stadig nye virkemidler. Nyere studier finner at slike mål og 

virkemidler til dels overlapper og motvirker hverandre. Kunnskapen om samspillseffektene er fortsatt 

mangelfull, spesielt når det gjelder hvordan energieffektiviseringstiltak virker sammen med andre 

deler av energi- og klimapolitikken, slik som prising av CO2-utslipp.  

 

Studien viser at energieffektiviseringstiltak som skal gi energisparing er lite effektive som 

klimapolitikk i Norge: Faktisk øker de samlede CO2-utslippene når det settes et tak på energibruken 

eller energiintensiteten i husholdningene. Dette skjer fordi husholdningenes energibruk i all hovedsak 

er elektrisitet. Når husholdningene bruker mindre elektrisitet, faller elektrisitetsprisene, og 

kraftkrevende industri med store prosessutslipp øker dermed sitt elektrisitetsforbruk. Også priser på 

andre innsatsfaktorer faller som følge av lavere etterspørsel etter flere varer og tjenester, og det 

kommer disse utslippsintensive bedriftene til gode. Jo strengere karbonpolitikken er, jo mer øker CO2-

utslippene som følge av energieffektiviseringspålegg. 

 

Energibruket i resten av økonomien går opp 

Studien tallfester også energisparingen i økonomien som helhet av å innføre tiltakene i 

husholdningene. Begrepet «rebound» brukes om effekter som motvirker den opprinnelige effekten av 

energieffektiviseringen. Beregningene våre anslår at økningen i industriens elektrisitetsforbruk bidrar 

til at rebound-effektene motvirker opp til 40 prosent av den opprinnelige energisparingen i 

husholdningene.  

 

Kostbare tiltak 

Et tak på energibruken er kostbart. Skulle de samme energibesparelsene i husholdningene bli oppnådd 

ved en avgift, ville den måttet ligge på rundt 200 prosent av elektrisitetsprisen. Det er vesentlig høyere 

enn dagens elavgift. Settes taket på energiintensiteten i husholdningene, blir velferdskostnadene, 



rebound-effektene og utslippene enda høyere, fordi ensidig reduksjon i boligkonsumet ikke vil bidra 

til å nå målet.  

 

Metode 

Studien bruker en numerisk generell likevektsmodell som gir en detaljert beskrivelse av samspillet 

mellom produsenter og forbrukere i norsk økonomi. Analyser av rebound-effekter ser gjerne på 

effekter av at utstyr og bygninger blir mer energieffektive uten at det gjør dem dyrere. Vår studie tar 

innover seg tilgjengelige anslag av hva slike energieffektiviseringstiltak koster i form av investeringer 

og driftsutgifter. Anslagene er basert på detaljert informasjon fra Institutt for Energiteknikk.  

Konklusjonene i studien avhenger av den valgte operasjonaliseringen av 

energieffektiviseringspolitikken som kan vise seg å få andre utfall enn vi har antatt. I tillegg er det stor 

usikkerhet knyttet til investeringskostnadene ved nye energieffektiviseringstiltak. Økt kunnskap om 

slike kostnader kan endre resultatene.  

. 
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1 Introduction 

Ambitious energy efficiency goals constitute an important part of the EU’s road to a low carbon 

economy. The energy and decarbonisation ambitions are reflected in the Commission’s Climate and 

Energy Policy Package for 2030 (EU, 2014). They include abating greenhouse gas emissions in 2030 

by at least 40% from the 1990 level, raising the share of renewable energy to at least 27%, and 

increasing energy efficiency by at least 27% (EU, 2012). The 2030 ambitions are set as milestones on 

the path to the decarbonised 2050 economies of Europe, as expressed in the Roadmaps (EU, 2011a; 

EU, 2011b). Norway has recently launched its new climate policy goals for 2030 and beyond in line 

with the EU (Ministry of Climate and the Environment, 2015).  

 

While the introduction and reformation of energy policy instruments take place rapidly, the knowledge 

of how several energy policy instruments and goals interact lags behind. Recent studies have revealed 

that the targets and policy instruments are partly overlapping and contradicting (Böhringer and 

Rosendahl, 2010; Huntington and Smith, 2011; Aune et al., 2012; Flues et al., 2014). The Energy 

Modelling Forum (EMF 25) study in the Energy Journal (Huntington and Smith, 2011) compares 

different kinds of energy efficiency policies and carbon policies to reduce emissions of climate gases. 

The main lessons learned from these studies are that carbon taxation is much more efficient to curb 

carbon emissions than energy efficiency policies, while the reduction in energy use is larger with 

energy efficiency measures compared to carbon taxation. With carbon taxation the possibility of 

substitution between fuels gives less reduction in energy use, but larger reduction in carbon emissions. 

However, the knowledge of energy efficiency policies interact with other instruments is still scarce 

(Oikonomou et al., 2008; Meran and Wittmann, 2012).  

 

In this paper we analyse two issues: what is the effect of energy efficiency targets for residential 

energy use and how these targets interact with carbon policies. We scrutinise two different 

interpretations of the 2030 energy efficiency ambitions: a cap on residential energy use and a cap on 

residential energy intensity.
1
 The main focus in our analysis is the so-called rebound effect, i.e., 

counteracting effects on energy use caused by energy efficiency efforts.  

 

                                                      

1 Norwegian energy efficiency policies have so far been based on technology standards for buildings, subsidies for 

implementation of more efficient technologies, metering systems, energy labelling, and investment support (Ministry of 

Petroleum and Energy, 2012). The existing Norwegian tax on electricity use in households and some industries is mainly for 

fiscal purposes (Ministry of Finance, 2007).  
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Saunders (2015) recommends computable general equilibrium (CGE) models as the most suitable tool 

for studying rebound effects of energy efficiency policies, as they are able to take into account general 

productivity growth as well as various market interactions and rebound effects. By means of CGE 

analysis we consider rebound effects, economic welfare costs, as well as the effects on economy-wide 

CO2 emissions.  

 

The traditional approach in the literature analysing residential energy efficiency policies has been to 

increase energy efficiency exogenously, implying that energy efficiency policies make energy more 

productive in providing comfort and other services to the households; see e.g., Hanley et al. (2009) 

and McKibbin et al. (2011). A drawback with traditional energy efficiency studies is that the costs of 

obtaining the productivity rise are usually disregarded. In contrast, we implement energy efficiency 

policies as a cap on consumers’ energy use and not as an exogenous increase in energy productivity.  

 

Moreover, we account for investments in technological improvements as a response to policies. In 

traditional CGE models such investments are, in principle, captured by the substitutability between 

capital and energy: by investing in new buildings or equipment, the energy use can be reduced. As 

climate change and energy security have become increasingly important in the making of policies, the 

development of and investments in energy efficient technologies take place at much higher speed than 

previously, and policy intervention explains increasingly more of both energy and capital price 

dynamics.  We believe that engineering experts’ knowledge on immature or yet undeveloped 

technologies and their insight on probabilities, costs and potentials carry more relevant information 

than historical evidence (reflected in substitution elasticities estimated on time series data). Therefore, 

we combine an economy-wide perspective with bottom-up information on costs and potentials for 

investing in energy efficiency technologies in residential buildings. The modelling is based on detailed 

information of energy investment possibilities derived from the bottom-up model TIMES-Norway 

(Lind and Rosenberg, 2013; Rosenberg and Espegren, 2014).
2
 A few previous CGE contributions have 

used such data for representing abatement costs of emissions to air, see e.g., Dellink (2005), Fæhn and 

Isaksen (2015) and Kiuila and Rutherford (2013).  

 

The rebound literature (Saunders, 2000; Saunders 2015; Turner, 2009; Gillingham et al., 2013) often 

classifies the drivers of rebound of residential energy efficiency improvements along the following 

lines (see e.g. Turner (2009) for a comparable classification): 

                                                      

2 This approach resembles the classical engineering approach to economic production functions (Chenery, 1949; Sav, 1984). 



4 

i) Pure efficiency effect – demand for energy is reduced as less physical energy is required to give a 

certain comfort level for the household;  

ii) Direct price effect – as energy use in physical terms becomes more efficient, the effective price of 

energy is reduced and the demand for energy increases;  

iii) Substitution effect – relative energy prices are changed and demand for the more efficient energy 

good will increase;  

iv) Income effect – lower effective price on energy will give a positive income effect on all consumer 

goods and services; 

v) Production and competition effects – energy intensive firms will benefit the most from lower 

market price on energy; 

vi) Macroeconomic effects – price effects in the energy goods markets will influence the markets for 

all other goods and services, especially production and consumption of energy intensive goods. 

Interactions between supply and demand in several markets will determine the final effects on en-

ergy prices and demand for energy goods. 

 

The direct price effect ii) and the substitution effect iii) are often called the direct rebound effects while 

the literature differs in what is called indirect rebound effects. For example Greening et al. (2000) 

include all income, costs, market and macroeconomic effects in the term indirect rebound effects.  

 

The pure energy efficiency effect i) is present in our analysis, as well as the direct price effect ii), but 

with opposite sign than in the above-mentioned studies (because of the increased shadow price of the 

energy cap, in contrast to the effects of costless increases in energy efficiency). Since residential energy 

use is restricted – at a cost – in our analysis, the demand for other types of energy goods increases, which 

is the opposite of the substitution effect iii). The energy efficiency policies also have a negative effect on 

total consumer expenditure and the income effect iv) is negative. Lower residential demand for 

electricity gives a substantial fall in the market price of electricity, benefitting the energy intensive 

industries most. We find that the electricity rebound is 37-40% with our base assumptions.  

 

The results of our analysis also confirm that instruments designed to save energy are ineffective in 

abating CO2. Our results are even more pessimistic:  Energy efficiency policies increase the CO2 

emissions and when applied simultaneously with carbon pricing, the problem is aggravated. The main 

explanation is the high share of electricity in total energy use. As only three per cent of the energy use 

in buildings (excl. industries) in Norway is based on fossil fuels (Ministry of Petroleum and Energy, 

2009), the energy efficiency targets will primarily affect electricity use. As households reduce 

electricity use, energy-intensive trade-exposed (EITE) industries expand. Importantly, even if the 

energy use in the EITE industries is also primarily electricity, they have substantial process emissions. 

As opposed to most CGE studies, we account for such CO2 emissions (other examples are e.g., 

Bednar-Friedl et al., 2012, and Fæhn and Isaksen, 2015).  
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The energy restrictions posed on households are costly: the shadow price corresponds to an equivalent 

tax of around 200%, depending on the policy design. In addition, welfare costs are reinforced as the 

expanding EITE industries are relatively unproductive. This arises from the relatively low carbon 

prices faced by the EU ETS emission sources compared to non-EU ETS emission sources, and also 

from other concessional terms enjoyed by the EITE industries. Moreover, a cap on energy intensity is 

a more stringent regulation than a cap on energy use, with higher welfare costs. 

 

The paper is organized as follows. Section 2 gives a theoretical background for the energy efficiency 

policies and effects. Section 3 presents the computable general equilibrium model we use and the 

modelling of energy efficiency technologies. Numerical simulations of the policy alternatives are 

presented in section 4. Finally, section 5 concludes.  

2 Theoretical background 

We consider a representative consumer that maximizes the utility (H) of dwelling services (D) and 

energy (E) consumption 

 

(1) H = u(D, E),        ui
′ > 0, uii

′′ < 0,  

given the budget constraint 

 

(2) PEE + PDD = Y 

 

PE and PD are the consumer prices on energy and dwelling services, respectively, which are 

exogenous for the consumer, and Y is income (equal to consumer expenditure). As a simplification we 

disregard consumption of all other goods. 

 

We consider two different energy efficiency policies: i) a cap on energy use and ii) a cap on the 

energy/dwelling intensity. The caps, determined by α< 1, are calculated relative to a baseline 

projection of energy and dwelling consumption, Eref and (
E

D
)
ref

 respectively, that are treated as 

exogenous relative to the cap. The different policies are represented by the following constraints on 

energy use: 

(3) E = αEref 

 

(4) 
E

D
= α(

E

D
)
ref
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The consumer maximizes utility with respect to dwelling services and energy consumption, given the 

budget constraint and either of the two energy efficiency policies. This gives the following first order 

conditions: 

i) Cap on energy use (equation 3) 

(5) uE
′ − γPE − μ = 0 

 

(6) uD
′ − γPD = 0 

 

γ is the marginal utility of income (shadow price of the budget constraint in equation (2)) and µ is the 

shadow price of the energy efficiency cap. With no cap on energy use, µ is zero and the first order 

conditions in equations (5) and (6) are reduced to the standard result that the marginal utility of energy 

relative to the marginal utility of dwellings equals the relative price between energy and dwellings. For 

given consumer prices and income we have the following results: With a cap on energy use the 

consumption of energy will be lower than without any cap, see equation (5), while the consumption of 

dwelling services is independent of the cap, see equation (6).  

 

ii) Cap on energy/dwelling intensity (equation 4) 

(7) uE
′ − γPE − μ

1

D
= 0 

 

(8) uD
′ − γPD − μ(

−E

D2) = 0 

 

With a cap on the energy/dwelling intensity, represented by the last term on the left-hand side in 

equations (7) and (8), we see from equation (7) that energy consumption will be lower than without a 

cap, but larger than in the situation with an energy cap (as long as D>1), see equation (5). From 

equation (8) it follows that the first-order effects of a cap on the energy/dwelling intensity increase the 

consumption of dwelling services (the last term on the left-hand side is positive), compared to a 

situation with no cap.  

 

In the numerical simulations presented in section 4 we analyse these policies using a CGE model with 

many markets and interaction effects. The energy efficiency policies will interact with the carbon price 

and energy goods prices through income and price effects that will generate economy-wide rebound 

effects that may counteract the first-order policy effects derived by this simplified model analyses. We 

calculate energy, emission and welfare effects in section 4. 
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3 The computable general equilibrium (CGE) model  

3.1 Numerical model  

We use a multi-sector CGE model for the Norwegian economy developed to analyse energy and 

environmental policies and strategies, SNOW-No
3
  (Greaker and Rosnes, 2015). The model is 

developed in GAMS/MPSGE (GAMS, 2014; Rutherford, 1999).  

 

Our model features a representative household that receives income from three primary factors: 

labour, capital and natural resources (fossil fuels). Labour and capital are mobile between sectors, 

while fossil fuel resources are specific to fossil fuel production. Total supply of labour and capital are 

given. 

 

The production technologies of commodities are captured by nested constant elasticity of substitution 

(CES) cost functions; see Figures 1 and 2. For most commodities, the input shares of capital, labour, 

energy and intermediate products provided by other sectors are price dependent. For fossil fuels, all 

inputs except the sector-specific fossil fuel resource are aggregated in fixed proportions. This 

aggregate trades off with the sector-specific fossil fuel resource at a constant elasticity of substitution.  

 

We model CO2 emissions from both energy use and industrial processes. Energy-related CO2 

emissions are linked in fixed proportions to the use of fossil fuels, with CO2 coefficients differentiated 

by the specific carbon content of fuels. Abatement can take place by fuel switching, substitution of 

other goods for energy, or by scaling down production and/or final consumption. CO2 emissions from 

industrial processes are linked to the output of the sector. Abatement of process emissions within 

existing production technologies can only take place by reducing production activities.
4
 

 

Final consumption demand is determined by the representative agent who maximizes welfare subject 

to a budget constraint with fixed investments (a given demand for savings) and exogenous government 

provision of public goods and services. Total income of the representative agent consists of net factor 

income and tax revenues net of subsidies.  

                                                      

3 SNoW-No: Statistics Norway’s World model – Norway   
4
 This assumption may be relaxed in the future with new carbon capture technologies.  
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Figure 1. Nested CES structure of production technology 
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Figure 2. Nested CES structure of production technology for fossil fuel production   

 

 

Consumption demand is represented by a three-level CES preference structure (see Figure 3). At the 

top level, aggregates of housing services, transport services and other goods are combined. At the 

second level, a CES function describes the substitution possibilities between dwellings and energy 

used in housing services; in the transport composite fuels and other transportation related goods are 

combined; and in the third composite all other goods and services are combined.  

Figure 3. Nested CES structure of household consumption 
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We model a small open economy, and the rest of the world is exogenous (interest rate, world market 

prices etc). All goods used in the domestic market in intermediate and final demand correspond to a 

CES composite that combines the domestically produced good and the imported good from other 

regions (Armington, 1969). Export is determined by a constant elasticity of transformation (CET) 

function between domestic and export market deliveries. Factor prices and prices of deliveries 

domestically are all determined by domestic market equilibrium.  Together with a given balance of 

payments, the real exchange rate that is consistent with domestic consumption will be determined 

(Horridge et al., 2013). The consumer price index is numeraire. 

3.2 Modelling energy efficiency investments in housing  

We combine the CGE model with detailed bottom-up data on potential technologies that are available 

to improve energy efficiency. As mentioned in the introduction, a few previous CGE contributions 

have used such data for representing abatement costs of emissions to air. Dellink (2005) introduces 

economy-wide abatement sectors for various emitted compounds. Fæhn and Isaksen (2015) model 

abatement of carbon emissions as a separate activity within each industry. Kiuila and Rutherford 

(2013) model abatement of CO2 in private transportation and propose methods for modelling 

abatement as an activity within a CES structure, with the two substitutable inputs abatement capital 

and CO2 emissions. 

 

We apply a similar method as Kiuila and Rutherford (2013). However, our challenge is to include 

residential energy efficiency technology options. The analogue to Kiuila and Rutherford (2013) would 

be to include energy efficiency as a separate activity that has energy and energy efficiency equipment 

as substitutable inputs. However, our model already includes substitution possibilities between energy 

and dwelling capital in consumption, and modelling energy efficiency investments as a separate 

activity would lead to double-counting.  Therefore, we exploit the CES composite of services from 

dwelling capital and energy use (see Figure 3) to account for energy efficiency options by calibrating a 

substitution elasticity that corresponds to technical energy efficiency data.  We elaborate on the data, 

estimation and calibration of the substitutability in Section 3.3. 

3.3. Data, estimation and calibration 

Substitutability in housing services 

The substitution elasticity between dwellings and energy in households is quantified in two steps. In 

the first step, we use Norwegian bottom-up data from Rosenberg and Espegren (2014) on energy 

efficiency costs and saving potentials of various measures available for households to estimate the 
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marginal cost curve for energy efficiency improvements. Measures include information campaigns, 

monitoring equipment, rehabilitation and insulation of roofs, walls and floors, rehabilitation and 

replacement of outer doors and windows, new electric equipment and ventilators, and post-installation 

or integrated installation in new buildings of solar energy collectors. The costs include direct costs of 

purchase, installation and maintenance of the equipment, as well as the possible adjustments needed to 

keep the quality of the housing service unaltered. Total costs of energy efficiency efforts also account 

for the counteracting energy cost savings.  

 

The dots depicted in Figure 4 reflect the data for each included measure, ranked according to costs 

(vertical axis). An OLS-estimated curve (second order polynomial) based on these data points 

constitutes a marginal cost curve for energy efficiency measures (the solid line). The cheaper measures 

include information campaigns, small-scale equipment and monitoring. In the upper part of the 

marginal cost curve are insulation and solar collecting projects. Accumulated energy saving potentials 

(for given levels of housing services) can be read along the horizontal axis.  

Figure 4. Marginal costs of electricity savings and calibrated substitution   
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0.3. The interpretation is that one per cent increase in dwelling capital gives energy savings of 0.3 per 

cent for a given level of the composite housing services (see Figure 3). The empirical literature is 

scarce on estimates of this substitution elasticity. Quigley and Rubinfeld (1989) estimate US annual 

rental value of housing in a demand system where dwelling comfort is a function of purchased energy 

and a vector of housing attributes consisting of heating systems, insulation, structures and the vintage 

of the building.  Their constant elasticity of substitution estimate is 0.14, i.e., about half of that 

suggested by our estimate. This supports the hypothesis that the future technological potential as 

estimated on the most recent information is higher than estimations based on previous periods due to 

the rapid technological development taking place.  

 

Some caveats of this method should be mentioned. First, the calibration relies on scarce, uncertain and 

subjective information and disregards some of the historical evidence. We explore the consequences 

by sensitivity analysis of the substitution elasticity; see Section 4.6. Further, Saunders (2015) 

questions whether CES is an appropriate functional form. At the outset, it would be better to use a 

more flexible functional form. The smoothed marginal cost curve presented in Figure 4 shows a fit 

with data of R
2
=0.62. 

 

A common challenge with the use of this kind of technical data is that several measures appear with 

negative costs; see for instance Hourcade et al. (2006) and Dellink (2005). When energy savings are 

included, several of the measures in Rosenberg and Espegren (2014) also come out with negative 

costs. In principle, at least three explanations for negative costs are possible. One is that these 

measures should be expected to be realised irrespective of energy efficiency policies and should be 

regarded as part of the baseline. The second is that cost components are left out of the calculations. A 

third is that there are market barriers to implementation, implying that while social costs are correctly 

negative, private costs are positive.
5
 This calls for separate modelling of social and private costs and 

implies that targeted policies are necessary to overcome the market failures, see Florax et al. (2011). 

The explanation is crucial for how the negative costs should be treated. We rely on the first 

explanation and interpret all measures that would be profitable in the baseline as part of the baseline.
6
 

This applies to about half of the potential measures found in Rosenberg and Espegren (2014).  

                                                      

5 Studies point to various barriers to energy efficiency investments, including  imperfect information, credit rationing for the 

investors, lack of infrastructure, non-rational consumer choices, and learning externalities (Fleiter et al., 2011; Økstad et al., 

2010; Giraudet et al., 2012). If these are market failures in an economic sense, so that private profitability is lower than 

social, policy responses are required (Florax et al., 2011). There are a number of second best policies (energy taxes, direct 

regulations like technology standards and caps on energy use, and subsidies to investments in new technologies etc.) that are 

available to deal with such imperfections. 
6For a study exploring the last two explanations, see Giraudet et al. (2012).  
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Quantifying the rest of the model  

The CGE model is calibrated to Norwegian National Accounts data for 2011. The dataset includes 41 

industries, based on the standard GTAP classification (Narayanan et al., 2012), but adjusted to 

Norwegian data availability. The list of industries is included in Appendix A.  

 

The energy goods comprise coal, crude oil, natural gas, refined oil products and electricity. In 

addition, the consumer can choose between the following sources for space heating: electricity, district 

heating, gas, paraffin and heating oil, coal, fuel wood and pellets. This disaggregation is essential in 

order to distinguish energy goods by CO2 intensity and the degree of substitutability. We distinguish 

between three commercial transportation sectors (air, water and land transport) as well as private 

transport. The main emission-intensive and trade-exposed (EITE) industries – pulp and paper 

industries, chemical products, non-metallic minerals, iron and steel products, non-ferrous metals – all 

form separate industries with different emission intensities. Process emissions from the EITE-

industries, together with oil and gas extraction and transportation, are the main CO2 sources in 

Norway, since electricity is produced mainly by hydropower. 

 

The responses of agents to price changes are determined by a set of elasticities. Substitution elasticities 

in the nested CES structures for production technologies are based on econometric estimates in 

Andreassen and Bjertnæs (2006), Graham et al. (1999), Krichene (2002), in addition to other pertinent 

literature as collected in the GTAP database (Narayanan et al, 2012). In addition, the substitution 

elasticities in the consumer model are based on Bye et al. (2008). The only exception is the 

substitution elasticity between dwelling services and energy in the housing services aggregate that is 

calibrated, see above. The Constant Elasticity of Transformation between domestic sales and 

deliveries at the foreign market, and the Armington elasticities of substitution between domestic goods 

and imports are all set to 4, which is in the upper part of estimates (McDaniel and Balistreri, 2002) as 

this is most relevant for a small open economy as Norway.   

4 Numerical analysis 

4.1 The EU-2030-policy baseline 

Our projection for 2030 is based on estimates for the Norwegian economy by Ministry of Finance 

(2013), but adjusted to account for the more recent decisions of EU’s and Norway’s 2030 climate 
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policy targets.
7
 Important drivers are growth rates for labour (0.7% p.a.) and capital (2% p.a.), together 

with technology-neutral efficiency improvements (0.6% p.a.).
8
 In line with official projections, we 

adjust the resource base so that production of crude oil and natural gas are reduced by 25% compared 

to 2011, and adjust the exogenous balance of payment accordingly.   

 

Recently, the Norwegian government decided to integrate its 2030 climate policy with the new targets 

of the EU (Ministry of Climate and the Environment, 2015). Norway is negotiating with the EU to be 

part of the flexible European burden-sharing agreement for non-EU ETS emissions. In addition, 

Norway will continue its participation in the EU ETS.
9
 We base our estimates of the European 2030 

carbon prices and energy prices on simulations from a European energy market study including the 

European 2030 targets (Aune et al., 2015). The EU ETS price increases to 37 EUR/ton CO2 in order to 

meet the 43% emission reductions target. Since the Norwegian emissions form a small share of the EU 

ETS this price is treated as exogenous. Regarding the carbon price in the sectors outside EU ETS, the 

terms for Norway are not settled yet. If we assume full flexibility within the non-EU ETS sectors 

across borders, all non-EU ETS sources will face the same EU-wide carbon price. We use this 

assumption. The 30% emission reduction target for the non-EU ETS sectors then yields a price of 230 

EUR/ton CO2.  

 

The European electricity price increases by 3.7% p.a. (Aune et al., 2015). It influences the electricity 

price in Norway, since differences between the domestic and European prices may occur due to 

transmission capacity limits. Domestic electricity production is limited upwards (but not downwards) 

due to limited availability of suitable renewable projects. Other world market prices are assumed to 

increase by 1.8% p.a. from 2011 with the following exceptions for particularly trade-exposed and 

carbon-policy affected goods: crude oil and natural gas (0.9% p.a.), non-ferrous metals (1% p.a.), iron 

and steel (1.7% p.a.), chemical products (1.2% p.a.), and non-metallic minerals (1.7% p.a.).
10

  

 

Norwegian CO2 emissions reach 50.3 million tons in 2030. This corresponds to an annual increase of 

0.7% from 2011. 56% of the emissions originate from the ETS sources and 44% from the rest of the 

economy.  

                                                      

7 In Section 4.5 we also construct a baseline in a regime without the new 2030 targets in order to isolate the effects of the 

carbon policy from the energy efficiency policy.  
8 In the case of residential energy use this adjustment accounts for the inclusion of energy efficiency measures that become 

profitable without additional policy incentives. 
9 No decisions are taken yet regarding renewable energy targets in Norway or in the EU. Hence, we disregard renewable 

targets of the EU and Norway in our scenarios. 
10 All these world market price projections are based on Ministry of Finance (2013). 
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4.2 Energy efficiency policy scenarios 

The Norwegian energy efficiency targets for 2030 are not settled yet. In this study we base the policy 

assumptions on the proposals of the European Commission, as Norway traditionally follows the EU 

climate policies closely even when there are no legal obligations to do so in the EEA legislation. The 

Commission (EU, 2014) proposed a 30% energy savings target for 2030, following a review of the 

Energy Efficiency Directive (EU, 2012). The European Council, however, endorsed an indicative 

target of 27% to be reviewed in 2020 having in mind a 30% reduction target.  

 

In our energy efficiency policy scenarios we only consider Norwegian targets. Furthermore, we 

restrict the focus to policies in the residential sector.
11

 Since such targets are far from settled yet, we 

have interpreted the political signals in two different ways: either as a cap corresponding to 27% 

reduction in residential energy use or as a 27% cap on residential energy intensity, both relative to a 

2030 baseline. We start by analysing the cap on energy use in section 4.3, before we compare the two 

alternative energy efficiency policies in section 4.4. In section 4.5 we discuss the interaction between 

carbon policies and the residential energy efficiency policies, while section 4.6 presents a sensitivity 

analysis.  

4.3 Cap on energy use 

Costs  

Economic welfare measured by Equivalent Variation (EV) drops by 1.0% compared to the baseline as 

a result of the 27% cap on residential energy consumption; see Table 1, first column of results. These 

costs reflect first of all the costs directly borne by the households because of the energy use restriction. 

They are represented by the high shadow price of the energy cap. The shadow price corresponds to an 

equivalent energy tax of 175%, i.e. nearly a tripling of the energy price (see Table 1)  

 

The shadow price depends on the extent to which the households are able to reduce their energy use by 

investing in energy efficient equipment that can provide them with the same utility of housing services 

with less energy input. We find that such substitution, in isolation, leads to a 3.2% increase in dwelling 

investments. However, the cost of housing services increases sharply due to the energy cap and both 

substitution and income effects result in lower demand for housing services and lower demand for 

dwellings, i.e. consumers choose less valuable houses (move or rent out parts of their houses). The 

                                                      

11
 EU has different targets for energy efficiency in the transport sector, especially related to CO2 (EU, 2012). These measures 

are quite different from the kind of policies we are focusing on in this paper. We leave this for future research.  
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demand for dwellings drops by 3.2% in the new equilibrium; see Table 1. Along with the 27% cap on 

residential energy use, the result is a fall in the utility of housing services of 5.8%.  

 

As a consequence of lower electricity demand by households, the domestic electricity price falls. This, 

along with lower labour and capital prices caused by reduced demand for dwellings, reallocates 

resources to other parts of the economy, primarily to the EITE industries. This increases the welfare 

costs, due to the fact that the EITE industries are leniently taxed initially. They have lower payroll tax 

rates and lower carbon prices than the non-EU ETS sources. These tax wedges imply that reallocation 

of resources to the EITE industries contributes negatively to welfare.   

 

On the other hand, two other effects contribute positively to welfare: First, dwellings are leniently 

taxed in Norway (Bye and Åvitsland, 2003) and lower consumption of housing services (including 

dwellings) increases efficiency. Second, as housing demand drops, consumption is diverted towards 

more transport activities. These are highly taxed initially (both for environmental and fiscal reasons) 

and welfare effect of this reallocation is, therefore, positive.  

Table 1. Results of energy efficiency policies. Percentage change from the respective baseline  

   

 
High carbon pricing regime 

(EU 2030 policy) 

Low carbon pricing regime 

 
Energy  

use cap 

Energy 

intensity cap 

Energy  

use cap 

Energy 

intensity cap 

Economic indicators:          

Welfare  -1.0 -1.3 -0.9 -1.1 

Utility of Housing services
*
 -5.8 -6.5 5.9 6.6  

Utility of Dwellings
*
 -3.2 -3.8 -3.1 -4.6 

Utility of Energy use in housing
*
 -27.0 -29.7 -27.0 -29.6 

Production (GDP) 0.0 0.1 0.0 0.0 

Production in EITE-industries  15.0 18.6  10.9  12.8  

Prices:           

Real electricity price  -15.5 -17.5 -10.5 -11.9 

Real wage rate -5.7 -6.4 -5.4 -6.2 

Real rental rate -7.5 -8.6 -7.0 -8.1 

Shadow price of energy efficiency cap (rate)
**

    175 210 164 194 

* The table reports values of the housing composite and its components; see Figure 3. 

** The shadow price is measured as the necessary tax rate to reach the cap (on energy use in housing or energy intensity).   

Energy use, rebound effects and CO2 emissions 

Since more than 90% of residential energy use in the baseline is electricity, we restrict the rebound 

analysis to electricity rebound. Electricity rebound is calculated as the increase in electricity use in the 

rest of the economy divided by the fall in residential electricity use.  
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The cap on residential energy consumption corresponds to a 26.7% drop in household electricity use 

from the baseline; see first column of results in Table 2. There is no direct electricity rebound in 

household consumption, but substantial indirect rebound effects (substitution, market and 

competitiveness effects, as explained in the introduction) that follow the fall of the domestic electricity 

price. These are especially pronounced in the EITE industries, which are also stimulated by the labour 

and capital price reductions. Eventually, electricity use in the EITE industries increases by 35.2%, 

while electricity use in the economy as a whole is reduced by 9.0%, since other industries than the 

EITE increase electricity use by 4.7% (Table 2). This corresponds to an economy-wide rebound effect 

of 37% from the initial electricity demand reduction in households.  

 

As only a small share of energy use in housing services consists of fossil fuels, the direct reduction in 

CO2 emissions from residential energy is small; see Table 2. The households reallocate consumption 

to other goods and services, and the subsequent transport increase by households causes a small 

increase of CO2 emissions. The largest CO2 effect is seen in EITE industries, which increase their 

process emissions by 1.7 million tons. All in all, domestic CO2 emissions increase by 1.2 million tons, 

or 2.4% from the baseline.  

Table 2. Results of energy efficiency policies: Change from baseline in electricity use and CO2 

emissions  

 
High carbon pricing regime Low carbon pricing regime 

 
(EU 2030 policy)   

  
Energy  

use cap 

Energy 

intensity cap 

Energy  

use cap 

Energy 

intensity cap 

Electricity use, mill. 2011-NOK and (%)   
 

    

Households -2.3 (-27%) -2.6 (-29%) -2.4 (-27%) -2.6 (-30%) 

EITE industries  0.6 (35%) 0.7 (44%) 0.4 (17%) 0.5 (20%) 

Other 0.3 (5%) 0.3 (5%) 0.1 (2%) 0.2 (3%) 

Total  -1.5 (-9%) -1.5 (-9%) -1.8 (-10%) -2.0 (-11%) 

Total rebound (%) 37 % 40 % 23 % 25 % 

CO2 emissions, mill. tons         

Households, residential -0.2 -0.3 -0.3 -0.3 

Households, transportation 0.1 0.1 0.3 0.3 

EITE industries  1.7 2.1 1.2 1.4 

Other -0.3 -0.4 0.0 0.0 

Total 1.2 1.6 1.2 1.4 

Total CO2 emissions (%) 2.4 3.1 1.8 2.1 

4.4 Cap on energy use vs. cap on energy intensity  

Welfare costs are higher with the energy intensity cap than with the cap on energy use; see Table 1 

(second column of results). The energy intensity cap of 27% leads to a fall in residential energy use of 

29.7%. In other words, the energy intensity cap is stricter and equivalent to a cap on energy use of 

29.7%. Thus, the cost effects for households are more pronounced. This is mirrored in a higher 
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shadow price on the cap: the shadow price now corresponds to a 210% tax on residential energy use 

(Table 1). Lower residential electricity demand leads to a larger drop in the domestic electricity price. 

From the theoretical model in section 2 it follows that the first-order effect on residential energy 

demand of both types of energy efficiency policies is negative compared to a situation without any 

policies, while the first-order effect on demand for dwellings is unaltered with a cap on energy use and 

positive with a cap on energy intensity. These results are confirmed by the numerical simulations for 

the use of energy. But, as the numerical model also accounts for composition, price and income 

effects, demand for dwellings falls in both policy cases, though less so when the use, rather than the 

intensity, is capped; see Table 1. The drops in electricity, capital and labour prices are larger and 

reallocations to the EITE production more pronounced. Compared to a cap on residential energy use, 

total welfare and income fall more.   

 

Residential electricity demand falls more with a cap on energy intensity (29.4%, Table 2). The 

reallocation to the EITE industries cause slightly larger indirect electricity rebound effects 

(substitution, market and competitiveness effects) amounting to 40% of the initial electricity cut of 

households.   

 

The use of transport fuels in the households is not much affected by the nature of the energy cap.  

However, the total CO2 emissions increase by 1.6 million ton or by 3.1% as opposed to the 2.4% 

increase in the case with a cap on energy use, see Table 2.
12

 This is mainly explained by larger process 

emissions of CO2 from the EITE industries. 

4.5 Interaction between energy efficiency policies and carbon policy  

In order to identify the impact of the interaction between energy efficiency policies and carbon 

policies, we have simulated the same energy efficiency reforms in another regime with low carbon 

prices, i.e., without taking into account the recent EU and Norwegian 2030 climate policy decisions. 

This low carbon pricing regime is based on what were the adopted or announced forthcoming climate 

policies in 2011. In the non-EU ETS sectors, carbon tax rates are retained at today’s level (20-40 

EUR/ton CO2 in real terms). Since 2008, Norway has been part of the EU ETS and here we follow the 

Ministry of Finance (2013) projection of a relatively low allowance price of 20 EUR/ton in 2030. Due 

to lower carbon prices in 2030, compared to in the main regime analysed above, international 

commodity prices are lower as well. Following Ministry of Finance (2013), the electricity price is 10% 

                                                      

12 However, increased domestic EITE production will probably give less leakage of carbon emissions to other countries. 

Thus, in a global perspective the national effects will be counteracted.  
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lower, while international prices of EITE industries are between 0.5 and 1.5% lower in 2030 than in 

the main regime. This is due to lower prices in the EU, with which about 85% of Norway’s 

international trade in EITE goods takes place. However, since prices in the rest of the world remain 

unchanged, the competitiveness of Norwegian firms increases slightly. With lower carbon prices, 

lower electricity prices and better competitiveness for EITE industries, Norwegian emissions are 28% 

higher in this regime (before energy efficiency policies are introduced) than in the main baseline 

where we have high carbon price.  

 

Comparing the results of the energy efficiency policies in this low carbon price regime with the results 

from the analysis above (EU 2030 policy, i.e., high carbon pricing regime) identifies the interaction 

effects of the energy efficiency policies with the 2030 carbon pricing policies. Both sets of results are 

presented in Table 1 and Table 2.  

 

The welfare costs of introducing energy efficiency policies are higher with high carbon pricing (EU 

2030 policy regime). It is less attractive to substitute fossil fuels for electricity in households when the 

carbon price is high. This is reflected in higher shadow prices of the energy efficiency caps and a 

larger electricity price fall. The EITE industries expand more, and since the relative difference 

between their CO2 price and that of non-EU ETS industries is more exacerbated, this implies higher 

welfare costs. So does a smaller increase in transportation (which is indicated in Table 2 as a smaller 

increase in the CO2 emissions). 

 

We also observe that the electricity rebound is higher when energy efficiency policies interact with a 

high carbon price, see Table 2. With the energy use cap the electricity rebound is 14 percentage points 

higher, and 15 percentage points higher with energy intensity cap. Energy prices (especially the 

electricity price) fall more as a consequence of the households’ more cautious energy use. This 

reinforces the reallocation of energy and other resources to the EITE industries. In the high carbon 

policy regime, thus, domestic emissions increase more in the wake of the energy efficiency policies 

towards households than if the 2030 carbon policy were not in place. 

4.6 Sensitivity analysis 

We have analysed the importance of substitution possibilities in housing services. Table 3 presents the 

results of a cap on energy use in two additional cases: when the substitution elasticity in housing 

services is zero and when it is doubled from the base assumption of 0.3 to 0.6.
13

 

                                                      

13 Qualitative effects are similar with an energy intensity cap. 
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A substitution elasticity of zero can be interpreted as a situation with prohibitively high investment 

costs, implying that residential energy can only be saved by cutting back on consumption of housing 

services. Thus, demand for dwellings drops by 27% and consumption shares of other goods and 

services increase. Final demand is shifted more markedly towards services and transportation, and we 

find a corresponding reallocation of industrial factor use. In particular, compared to the main case the 

expansion of the EITE industries is smaller; see Table 3.  

 

The lack of technological options increases the shadow price of the cap significantly compared to the 

main case with substitution elasticity of 0.3. This is the main explanation for the substantially higher 

welfare cost. Welfare is also affected by interaction effects with existing price wedges. Smaller 

expansion of the EITE industries, substantially lower demand for dwelling services and stronger 

demand for transport services are reallocations that modify the welfare costs. We also find a smaller 

economy-wide electricity rebound in this case, reflecting first of all a much weaker electricity demand 

from the EITE industries than in the main scenarios.  

 

When the substitution elasticity is doubled from 0.3 to 0.6, the shadow price of the energy efficiency 

policies is brought down. As a result of larger investments in energy-efficient dwellings and modified 

composition and income effects of the policies, the demand for dwellings increases. The lower shadow 

price of the cap when substitutability is doubled implies a smaller welfare loss. However, the 

economy-wide electricity rebound increases to 62% and the rise in CO2 emissions doubles. Both these 

implications are explained by a larger EITE expansion.  

Table 3. Sensitivity analysis: Effects of cap on energy use with different substitution elasticities 

in housing services. Percentage change from respective baselines   

  
Low elasticity  

(0) 

Base elasticity 

(0.3) 

High elasticity 

(0.6) 

 Economic indicators:       

 Welfare -2.3 -0.9 -0.6 

 Dwellings -27.0 -3.2 1.7 

 Residential energy use -27.0 -27.0 -27.0 

 EITE production  5.3 15.0 24.6 

 Prices:       

 Electricity price -22.4 -15.5 -13.4 

 Real wage rate -16.0 -5.7 -2.3 

 Real rental rate -25.2 -7.5 -1.8 

 Shadow price of energy cap (rate)
*
 421 175 95 

 Emissions and rebound effects: 

    Total CO2-emissions  0.3  2.4  4.7  

 Electricity rebound  17 % 37 % 62 % 

 * Shadow price is measured as the necessary tax rate to reach the cap.   
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5 Concluding remarks 

A well-known result from studies of climate policies is that instruments designed to save energy are 

inefficient in abating CO2. Our results are even more pessimistic:  Energy efficiency policies increase 

CO2 emissions, and simultaneously introducing carbon pricing only aggravates the problem. The main 

explanation is the high share of electricity in total energy use in Norway. Energy use in dwellings is 

almost entirely based on electricity. As households reduce electricity demand, energy-intensive and 

trade-exposed industries (the EITE industries) can access electricity and other resources at lower 

prices. Rebound effects within households are small, but economy-wide, indirect rebound is 

significant because the EITE industries expand. The economy-wide rebound effect is in the middle of 

previous findings (Gillingham et al., 2013). 

 

These effects would have been dampened if energy efficiency policies were applied to all energy users 

in the economy. However, since the EITE industries have large process emissions of CO2 that are 

independent of energy use, extending the energy efficiency policies to all energy use would improve, 

but probably not remove the adverse emission impacts. The effect will depend on the substitution 

possibilities between electricity and fossil fuels in the EITE industries. 

 

Capping energy intensity rather than energy use increases the stringency of the policies and welfare 

costs are therefore higher in that case. The costs of the reforms are also reinforced as the EITE 

industries are relatively unproductive and expand more. This arises from the relatively low carbon 

prices faced by the EU ETS emission sources, and also from other concessional terms enjoyed by the 

EITE industries, like lenient rates of electricity and payroll taxes.   

 

We combine the CGE analysis with available, case-relevant bottom-up information on energy-saving 

investment costs. The bottom up information contains anticipated future costs and potentials of 

available technological adaptations. It is important to emphasise the uncertainty of this information. 

The calibration to experts’ guesstimates sets aside evidence from previous experience and relies on 

scarce and subjective information. The potential benefit is that we capture recent indications on future 

development trends in energy technologies. In CGE contexts, the more common representation of 

energy efficiency improvements is as free, autonomous productivity parameter shifts. We find it 

pivotal to account for the costs of such productivity achievements. The sensitivity analysis shows that 

increasing the substitution elasticity increases rebound effects of both electricity and fossil fuels. As 

higher substitutability reduces the costs of energy efficiency investments, this sensitivity analysis 

approaches the assumption made in previous CGE studies of costless energy efficiency improvements. 
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When accounting for costs of investing in energy efficiency, both price and income effects restrict 

consumption of other energy and energy-based goods, indicating too large rebound estimates in 

previous literature assuming autonomous energy efficiency improvements. 

 

Our conclusions hinge on the operationalization we have chosen of the energy efficiency policies. The 

benchmarking, the targets, the extension and the timing are all elements to be determined in 

forthcoming political processes. However, this is not an argument for postponing analyses until 

policies are settled. On the contrary, ex ante knowledge of alternative policy designs is valuable input 

to such processes. 

 

Bottom-up information of energy efficiency tends to include potential measures with costs below zero. 

We have interpreted these as projects that will be realized along the baseline scenario without 

additional policy measures. However, if there are some kinds of market barriers to energy efficiency 

investments like imperfect information, credit rationing for the investors, lack of infrastructure or 

learning externalities, the modelling should rather reflect the negative costs as private costs exceeding 

social costs. This could possibly alter the results and policy implications.  

 

The inclusion of residential energy efficiency investment costs is a first step towards including new 

abatement options. Extending this approach to other energy use and to abatement options not linked to 

energy efficiency improvements would give a more complete representation of costs, rebound effects, 

carbon emissions and interaction among policy targets and policy instruments. 
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Appendix A: The numerical model 

Table A1. List of industries in the model  

Industry Code  

Agriculture AGR 

Forestry FRS 

Fishing FSH 

Coal COA 

Oil & gas CRU 

Minerals n.e.c. OMN 

Food products – meat MEA 

Vegetable oils and fats VOL 

Dairy products MIL 

Food products n.e.c. OFD 

Beverages and tobacco products B_T 

Textiles TEX 

Wearing apparel WAP 

Leather products LEA 

Wood products LUM 

Paper products, publishing PPP* 

Petroleum, coal products OIL 

Chemical, rubber, plastic products CRP* 

Mineral products n.e.c. NMM* 

Ferrous metals I_S* 

Metals n.e.c. NFM* 

Metal products FMP 

Motor vehicles and parts MVH 

Transport equipment n.e.c. OTN 

Machinery and equipment, incl. electronic equipment MEE 

Manufactures n.e.c. OMF 

Electricity ELE  

Gas manufacture, distribution GAS  

Water WTR 

Construction CNS 

Trade TRD 

Transport n.e.c. OTP 

Water transport WTP 

Air transport ATP 

Communication CMN 

Financial services n.e.c. OFI 

Insurance ISR 

Business services n.e.c. OBS 

Recreational and other services ROS 

Public Administration, Defense, Education, Health OSG 

Dwellings DWE 
* Energy-intensive trade-exposed (EITE) industries 
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Table A2. List of consumption goods in the model  

Food and non-alcoholic beverages 

Alcoholic beverages and tobacco etc. 

Clothing and footwear 

Dwellings  

Heating: Electricity 

Heating: Gas 

Heating: Paraffin and heating oil 

Heating: Fuel wood, coal etc. 

Heating: District heating 

Furnishings, household equipment and routine household maintenance 

Health 

Transport: Transportation services excl. fuel  

Transport: Fuel 

Communication 

Recreation and culture 

Education 

Restaurants and hotels 

Miscellaneous goods and services 

 

 


	Bye_Fehn_Rosnes_Residential_energy_efficiency_CREE_WP18_2015
	CREE_WP_cover_CREE_WP18_2015

	Sammendrag_CREE_paper 18_2015_Til_WP
	Bye_Fehn_Rosnes_Residential_energy_efficiency_CREE_WP18_2015.pdf
	Bye_Fehn_Rosnes_Residential_energy_efficiency

	Bye_Fehn_Rosnes_Residential_energy_efficiency_CREE_WP18_2015
	Bye_Fehn_Rosnes_Residential_energy_efficiency_uten_sammendrag


