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Why Event History Analysis?

• A general analytical framework: The analysis of discrete 
events/decisions over time. 

• The method exploits the timing of events, not only their 
occurrence. 

• Can be used to assess impacts on events/decisions of:
– Exogenous covariates
– Time – Duration – Past events and durations
– Exogenous and endogenous events

• Particularly suited for efficiently exploiting the wealth of 
information embedded in merged administrative register 
data.
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Two Interpretations

1. Interpret the dependent variable(s) as a duration or (if 
more than one event can occur) as a set of latent 
durations.

2. Interpret the dependent variable(s) as a sequence of 
dichotomous (0/1) variables (panel data).

Frisch Centre

Examples
• Time to recovery (or death) after a medical treatment
• Time to a car accident occurs
• Time to promotion (or dismissal) after first employment
• Time to employment (or labor market exit) after entry into unemployment or 

after school graduation
– The change in time to employment caused by participation in an active labor 

market program (ALMP)
• The duration of poverty

– The change in the occurrence and duration of poverty caused by activation (or 
other ”treatments”)

• The duration of strikes
• Time to retirement

– The change in time to retirement caused by a change in retirement incentives (e.g., 
the introduction of AFP)

• The duration of sickness absence
– The change in the duration of sickness absence caused by a change in certification 

rules (i.e., July 2004)
– The impact of absence duration on the relapse propensity

• The length of schooling
• The duration of marriage

– The change in the duration of marriage caused by child birth
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Why Not Standard Regression?

• Regressions with a duration as the dependent 
variable run into problems due to:
– Right censoring – not all subjects experience the 

event(s) in question
– Time varying right-hand-side variables

• Standard panel data models may run into 
difficulties due to
– Many periods (if the information in the data is to be 

exploited efficiently)
– Endogenous exits from the panel
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Structural or Reduced Form Modeling

• Event history models are typically applied in a reduced form setting, 
with focus on
– duration dependence,
– causal effects.

• But structural interpretations can be accommodated, typically with 
focus on
– ”Deep structural parameters” (i.e., parameters that characterize

preferences and/or technology).
• A structural model imposes restrictions on the interpretation of the 

data, (presumably) justified by theory. 
– The cost: Less reliable results (particularly if someone questions the 

empirical relevance of the theory).
– The gain: More general wisdom can be extracted from the data. Results 

can more easily be extrapolated outside the enviroment on which they are 
based.
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Basic Concepts in a Single Risk Model

• Let T be a stochastic duration, with a continuous distribution on the 
positive axis and let t be a realization of this variable.
– The stochastic  duration assumption requires that there is always an 

element of randomness, even if we new the data generating process 
exactly. Defective risks are ruled out.

• The following functions constitute the building blocks of event history 
analysis:

– The distribution function:

– The survival function:

– The density:

– The hazard rate:
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The Hazard and the Survival Functions

• According to the law of 
conditional probabilities we 
have:

• By definition: 
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Expected Duration

• Expected duration 
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Data Structures

• Stock or flow sampling?

The observation window Time
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The Difference Between Stock and Flow 
Populations

• Example: Mean unemployment duration (based 
on interviews with stock and “flow out” samples, 
Norway 1999).
– Mean ongoing duration in stock: 357 days. If the 

spells on average are sampled halfway, these spells 
will on average have lasted around 700 days when 
completed.

– Mean completed duration in “flow out”: 214 days.
• Stock-samples are length biased
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Censoring and Truncation

• Censoring: The researcher observes only a part 
of a spell, and knows that the duration is at least 
as long as the observed part.
– Left censoring 
– Right censoring

• Independent (e.g., end of observation window)
• Dependent (competing risk – non-random attrition)

• Truncation: Some spells (typically very short) are 
not observed at all (left-truncation).
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Nonparametric Descriptions 
of the Survival Function

• Hazard rates computed on the basis of observed 
event frequencies in relation to the risk set, i.e., 
the number of subjects at risk at any point in time.

• Life Tables
– Based on ex ante definition of discrete time intervals

• Product Limit Estimator (Kaplan-Meier)
– Time intervals decided on the basis of actual events
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Parametric Specification of Hazard Rates

• Proportional hazard (PH):

• Accelerated failure time (AFT):  

exp( ' )

( | ) ( ) ( )
x

h t x b t x
β
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Interpretation of Parameters
• Independent of how time is measured (days, weeks, 

months), since the hazard is defined in continuous time. 
• When the model is proportional, the coefficients attached 

to explanatory variables can be interpreted as
– If the variable is a continuous scalar: The elasticity with respect to 

exp(variable). So if the variable is measured in logs, we get the 
elasticity directly.

– If the variable is a dummy: The impact of the dummy is to shift the 
hazard by 100(exp(coefficient)-1) percent (relative to a reference 
value). If the coefficient is “small”, the percentage shift can be 
approximated by 100*coefficient.
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The Baseline Hazard in Proportional Models

• Parametric assumptions regarding the 
distribution:
– Exponential distribution: 
– Weibull distribution: 

• Piecewise constant hazard: 

( )b t b=
1( )b t tαα −=
( )  for 1b t b tτ τ τ= − < ≤
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Estimation – Maximum likelihood

• A subject’s contribution to the likelihood is either 

for completed durations, or

for right-censored durations
• So, with outcome indicator y, the likelihood function 

becomes:
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Time-varying Covariates and 
Episode-splitting

• If explanatory variables are time-varying, each spell is split 
into sub-spells, such that all variables are constant within 
each sub-spell.

• With time and/or duration dummy variables – representing 
piecewise constant hazards – spells must be split 
according to the assumed frequency of changes in these 
variables (e.g., weekly or monthly).

• All spell parts are treated as right-censored, except 
(potentially) the last one. 

• The density for a given spell is the product of the survivor 
functions for all survived sub-spells times the hazard at 
the time of the transition (unless the spell is censored).
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Cox Partial Likelihood
• If the model is of the proportional hazards type, the 

impacts of x can be estimated while leaving the 
baseline hazard unspecified. 

• Only the order of the transitions is exploited, not 
their exact timing. 

• Consider an event occurring at duration t, with Nt 
subjects in the risk set. The probability that this 
event belongs to individual i is:
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Unobserved Heterogeneity

• Mixed proportional hazard (MPH)

• Since v is unobserved, we cannot use it as an 
input to the data likelihood function. 

• What if we disregard v?

( | , ) ( ) ( )h t x v b t x vλ=
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Unobserved Heterogeneity and 
Estimation Bias

• If v is correlated to x, estimates of β will be biased just like 
in standard regression analysis (it will measure the causal 
impact of x as well as the spurious association).

• But even if v is “white noise” (completely random), its 
existence will bias estimates of both the degree of 
duration dependence b(t) and the estimated impacts of 
exogenous covariates β.

• In practice, this implies that is rarely defendable to ignore 
unobserved heterogeneity.  
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Sorting and Duration Bias

High hazard

The nature of sorting by spell duration

Low Hazard

“Observed hazard”

Duration
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Bias Caused by “White Noise” – Evidence 
from Monte Carlo Trials
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How to Take Unobserved Heterogeneity into 
Account?

• We can write the likelihood contribution (the density) 
from a completed spell as

• With outcome indicator y, the likelihood function then 
becomes:

• But this expression has a tractable (closed form) 
solution only for some special cases.

( | ) [ ( | , )] ( | , ) ( | , )v
v

l t x E l t x v h t x v S t x v dv= = ∫

( | , ) ( | , )iy
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The Weibull-Gamma Mixture

• Assume that unobserved heterogeneity is distributed 
according to a Gamma distribution and that individual 
spell durations are either exponentially or Weibull 
distributed.

• Then a closed form solution exists for the marginal 
distribution of spell durations – the expected survival and 
density functions can be calculated directly.

• These particular assumptions have often been used 
simply because they are analytically convenient. 
– They are also incorporated in many software packages.

• But the results may be completely driven by the 
assumption!
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Identification
• Unless the impacts of unobserved heterogeneity can be 

identified, it is not meaningful to try to model it.
• The proportionality assumption – combined with at least 

one exogenous covariate – is sufficient for identification, 
provided that no risks are defective; i.e., all hazards are 
strictly between 0 and infinity.

• But can we rely on the proportionality assumption for 
identification? 

• After all, the proportionality assumption is typically made 
for convenience, not because we have prior evidence that 
it is valid.
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Sources for Nonparametric Identification

• Repeated spells
– Requires that the spells are independent except 

through the common unobserved variable: No “lagged” 
duration dependence.

• Exogenous time varying covariates
– Cyclical or seasonal fluctuations in hazard rates
– Exogenous events
– Time variation in the accessibility of treatments
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Nonparametric Modeling of Unobserved 
Heterogeneity – A Latent Class Approach

• Assume that there are Q different ”types” – or latent 
classes – v1,…, vQ, that occur with the probabilities p1,…, 
pQ.

• If a subjects contribution to the likelihood conditional on v 
is l(t|x,v), the expected unconditional contribution is

• Nonparametric maximum likelihood (NPMLE): Maximize 
the likelihood function with respect to all the model 
parameters plus vq, pq,and (NB!) Q.

1

( | ) ( | , )
Q

q q
q

l t x p l t x v
=

=∑
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How to Select the Number of Classes?
Information Criteria for Maximum-Likelihood 

Estimation
• Maximize the likelihood?

– Will not the likelihood always increase as more classes 
are added?

• Maximize a penalized likelihood?
– Penalized logL =logL-a(#parameters).

BIC: a=0,5ln(#obs)
HQIC: a=ln(ln(#obs))
AIC: a=1
ML: a=0
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Interval Censoring

• In practice, we rarely observed the exact timing 
of an event. Instead, we observe in which 
month/weak/day it occurred. 

• We then have three options:
1. ”Pretend” that the data are really continuous (i.e., 

disregard the problem).  
2. Use a discrete panel data model instead.
3. Formulate the event history model in terms of interval 

censored data. 
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Grouped Hazard Rates

• The probability that an event occurs between t-1 and t, 
given that it did not occur before t-1:
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A complementary log-log function

• Let
• Let xt be constant within time intervals of unit length. 

We can then write 

• The probability that an event occurs between t-1 and t
(given that it did not occur before t-1) is then given by 
the “complementary log-log function” (c-log-log)

'( , ) ( ) exp( )t th t x b t x β=

' '

1 1
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C-log-log and Logit compared
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Interval Censoring and Left Truncation

• Spells that both start and stop between two 
“observation posts” are not recorded at all.

• Thus, the analysis population is selected, with too 
few short spells.

• More seriously: If unobserved heterogeneity is 
present, a stochastic dependence arises between 
observed and unobserved covariates at the 
moment of entry into the dataset.
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The Unobserved Heterogeneity Distribution 
Conditional on Being Observed

• Let f(v) be the unconditional distribution (density) 
of unobserved heterogeneity, and let S0(v) be the 
probability of “surviving” the entry interval.

• The conditional distribution of unobserved 
heterogeneity at entry into the data can then be 
derived by Bayes’ Rule:

[ ]
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0

( | )( | ) ( ),  in our case:
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Competing Risks
• A competing risks model is a model with more than one 

possible outcome/event. 
• Competing risks is a trivial model extension insofar as 

there is
– No interval censoring or all events take place at the boundary of 

time-intervals.
– No unobserved heterogeneity or only unobserved heterogeneity 

that can be assumed independent across risks

• The different hazard rates (pseudo survival functions) can 
then be estimated one by one, with transition to competing 
risks treated as independently right-censored.
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Dependent Risks

• Dependencies between the two risks arise if
– The data are interval censored (grouped)
– Unobserved heterogeneity is correlated across the competing 

states.
• No longer necessarily the case that disregarding unobserved 

heterogeneity yields a negative bias in duration dependence.

• The competing hazards must then be modeled 
simultaneously.

• With grouped hazards, we need an additional assumption 
regarding the evolvement of the competing hazards within 
the censored time intervals, e.g., that the hazards are 
constant within these (short) time periods.
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Period-specific Event Probabilities (grouped 
hazards) with K Competing Risks
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A Useful Decomposition

Probability that one event occurs
Conditional probability that
the event is of type k

We then have that
( 1 | 1, )

1 exp kt
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k kt
k

p t T t T t K k
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The Multivariate Mixed Proportional Hazard 
Rate Model (MMPH)

1

( | , ) ( ) ( ) ,    1, 2,...,
where
( ,..., ) is subject to a joint distribution

k t k k t k

k

h t x v b t x v k K

v v

λ= =
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Nonparametric Modeling of Unobserved 
Heterogeneity in Competing Risks Models

• Example: Two possible events, with latent variables
(v1, v2 )

• Standard practice: Expand the model with a new potential 
location of each variable and estimate the probabilities of 
all possible combinations. As a result the number of 
“types” (probabilities) is expanded according to the pattern 
1, 22=4, 32=9, 42=16 …,. This becomes computationally 
intractable, particularly if there are many competing risks. 
With 5 competing risks, the model expands according to 
1,32, 243, 1024,…..

• A better approach: Expand the model with only one new 
probability at each step, i.e., with a new vector.

• Or: Reduce ”dimensionality” by means of factor loading.



22

Frisch Centre

The Impact of Endogenous Events 
– The Timing of Events (ToE) Approach

• Example: The treatment effect of Active Labor Market 
Program (ALMP) participation on the employment hazard. 

• Sample unemployment spells at inflow. The spells start 
with a competing risk situation: Transitions to
– Work
– Treatment (ALMP)

• Transitions to ALMP causes an immediate shift in the 
employment hazard (on-program effect)

• If the program ends without a job-transition, a new shift 
occurs (post-program effect). 
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Identification of Treatment Effect Requires 
”No-anticipation”

• The agents are assumed not to react to private 
information regarding the timing of a forthcoming 
treatment. 

• But they are allowed to respond to knowledge regarding 
the treatment probability as reflected in the statistical 
model. 
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Monte Carlo Analysis 
(Gaure, Røed, Zhang, 2007)

• Artificial data designed to resemble ”typical 
unemployment spells in administrative register 
data” (50.000 spells)

• True model (DGP): 
– No duration dependence
– No treatment effects
– Exogenous time variation in both hazards. Also 

exogenous variation du to an observed characteristic.  
– Extensive unobserved heterogeneity with positive 

sorting into treatment (the two unobservables are 
positively correlated). 
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Some Key Results
Table 4 

Estimated Effects of Exogenous Covariate and Endogenous Treatment  
Results from 100 trials based on the baseline DGP 

  Without control for  
unobserved heterogeneity 

BIC HQIC AIC ML 

 True 
value 

Mean Est. Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

eβ  -1 -0.828 0.014 100 -0.937 0.021 60 -0.968 0.024 31 -0.992 0.026 11 -1.00 0.028 8 

pβ  1 0.926 0.011 100 0.989 0.024 8 0.993 0.019 5 0.998 0.026 4 0.998 0.019 3 

1α  0 0.400 0.019 100 -0.020 0.035 19 -0.018 0.037 6 -0.008 0.038 6 -0.003 0.039 4 

2α  0 0.306 0.025 100 -0.022 0.040 21 -0.010 0.039 11 -0.008 0.044 9 -0.003 0.046 6 

,ed dλ ∀     98   41   20   9   7 

,pd dλ ∀     96   6   4   5   5 

 

Parameter estimates approximately normally distributed. Standard
errors computed conditional on the number of support points can be 
used for statistical inference. 
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Estimated Duration Dependence by Number of 
Support Points in the Heterogeneity Distribution
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What if We Disregard Interval Censoring?
Table 7 

Estimated Effects of Exogenous Covariate and Endogenous Treatment  
with Continuous-Time Model Applied on Discrete-Time Data 

Results from 10 trials of each model. 
 I II III IV 
 Integer periods 

only 
(40 periods) 

4 sub-periods 
between integers 

(160 periods) 

30 sub-periods 
between integers 
(1,200 periods) 

100 sub-periods 
between integers 
(4,000 periods) 

Average sub-
period event 
probability (from 
origin state) 

 
0.186 

 
0.050 

 
0.007 

 
0.002 

     
Average number 
of support points 
found according to 
ML criterion 

 
4.1 

 
5.8 

 
9.1 

 
9.6 

Estimated effects (and mean standard error) 
 True 

value 
Mean 
est. 

Mean 
S.E. 

Mean 
est. 

Mean 
S.E. 

Mean 
est. 

Mean 
S.E. 

Mean 
est. 

Mean 
S.E. 

eβ  -1 -0.726 0.010 -0.829 0.017 -0.948 0.023 -0.978 0.024 

pβ  1 0.951 0.011 1.032 0.185 1.015 0.019 0.997 0.019 

1α  0 0.447 0.026 0.251 0.039 0.041 0.052 0.009 0.042 

2α  0 0.300 0.031 0.206 0.040 0.040 0.044 0.006 0.045 
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Interpreting the Results - Simulations

• It may be difficult to interpret the output from 
event history models with many events and many 
explanatory variables. The coefficient estimates 
may be of limited interest.

• Model simulations may used to evaluate the “total 
impacts” of particular variables or treatments.
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Simulation Strategy
• Given vectors of 

– Observed explanatory variables,
– A distribution of unobserved covariates,
– A vector of estimated parameters.

• Assign correct observed variables and make draws from 
the heterogeneity distribution for each subject at entry into 
the dataset. 

• Simulate everything from there (except the path of 
exogenous covariates)
– Compare computed transition probabilities over discrete time 

intervals with draws from a uniform distribution defined on [0,1],
– Or invert the (pseudo) survivor function and make a similar draw to 

predict duration until the event in question occurs.
• Obtain confidence intervals on effects of interest by means 

of parametric bootstrap.
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Parametric Bootstrap

• Draw alternative parameter vectors from the (presumed) 
multivariate distribution of parameter estimates.

• The draws are made by means of the Cholesky 
decomposition. Let L be a lower triangular matrix, such that 
the estimated covariance matrix is   

• Let zs be a vector of draws from the standard normal 
distribution collected for trial s. Let    be the vector of point-
estimates. The parameters drawn for trial s are then given 
as  

'V LL=

b̂

ˆ
s sb b Lz= +

Frisch Centre

Example: 
The Estimated Impacts of ALMP Participation 

(Gaure, Røed, and Westlie, 2008)

• Topic: The impacts of ALMP on the outcome and duration 
of unemployed job search and on the quality of a 
subsequent job.

• Timing of events approach
• The paper identifies: 

– “Adverse” lock-in effect on employment propensity
– “favorable” post-program effect on employment propensity,
– Small favorable earnings effect,
– Small negative effect on job stability.

• Total impact?
• Model simulations:

– Compare outcomes for participants and non-participants with and 
without and without treatment.
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642 [288, 1,043]25,90825,26527,967Monthly earnings

1.42 [0.40,2.58]36.5435.1229.63Employment                                
ended within a year

If employment

-0.05 [-0.70, 0.60]24.9825.0318.16Other Benefits

-1.58 [-2.15, -0.93] 23.5225.1025.72Education

2.07 [1.46, 2.79]49.3247.2555.69Employment

Outcomes

1.23 [1.04, 1.41] 15.1813.955.19Mean duration of 
unemployment

Effect of treatmentParticipants 
with 

treatment

Participants 
without 

treatment

Non-
participants


