
Hour 8: Simulation 
 
Although simulation is not directly related to the event history analysis, it is a useful tool 
to diagnose the model parameters, to test model formulation, and to do post estimation 
inferences. We can use simulation, and Monte Carlo style studies to investigate the 
validity of model assumptions, e.g. test duration dependence, or to compare different 
methods in control the unobserved heterogeneity.  
 
Recently the non-parametric maximum likelihood method becomes popular in estimation 
of hazard rate models. With simulation and Monte Carlo study we can uncover many 
properties of NPMLE. Especially since the asymptotic properties of NPMLE are still 
unknown, one thus can use simulation and bootstrap method to get estimation errors for 
inference.  
 
Also, the interpretation of estimates from the hazard rate formulation is not intuitive. One 
needs to construct proper and real world related statistics to show the results from 
estimation. for example, if we have estimated a hazard rate model for unemployment 
duration, and wish to express the causal effect of program participation during 
unemployment spells. We could report that participation to program increase the hazard 
rate to job by ##%, but for policy maker and public, hazard rate is not easy to 
communicate. In that case, we can by simulating the unemployment duration with and 
without estimated program effect, to demonstrate how the spell length can be reduced in 
average.  
 
 
Random number drawing in Stata 
 
In Stata (or equivalently in any statistics programs), all the random number drawing is 
based on the uniform() function. The uniform() draws a random number from (0,1), based 
on default or user supplied random seed. The drawn random number can then be 
manipulated to simulate numbers from different statistical distribution, or other tasks, 
such as bootstrap draw.  
 
Let’s look at some examples: 

1. Open Stata in interactive mode 
2. set mem 50m 
3. set obs 100 /* create a dataset with 100 observations and no variable for the time-

being. */ 
4. gen x1=uniform() 
      we can do a summarize to check the variable x1 now.  
5. if we wish to draw a random number from a standard normal distribution, we can 

do this:  
      gen x2=invnormal(uniform()) 
6. if we wish to draw a random number from a normal distribution with 2( , )N μ σ , 

we can rescale the drawn from invnormal function.  



gen x3=1+sigma*invnormal(uniform()) /*mu=1, sigma=0.5, variance is thus 
0.25*/ 
do a summarize x3, detail, to see the distribution of x3. you can see that this 
seems to be a normal distributed variable with mean 1, variance 0.25.  
 

7. you can draw normal density based on the x3, and plot the density against x3. 
gen p3=normalden(x3,1,0.5) 
sort x3 /* for create graph connected, such that x3 are connected in ascending 
order*/ 
graph connected p3 x3 
 

8. draw a number from Gamma distribution. 
 
 
Distribution of Gamma: 
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n is the shape parameter, λ is the scale parameter. 
 
For n=1 Gamma distribution reduces to exponential distribution. Therefore choose a 
standard Gamma with shape, scale  
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Suppose we wish to draw a number x from Gamma distribution with , from 
formula above, we get immediately  

( ) 1E x =

1( ) 1  ;  ( )nE x n Var xλ
λ λ

= = ⇒ = ⇒ =  

 
suppose we set variance of Gamma distribution to  0.6475 (I made this in the similar way 

as in Zhang(2003)). We then get the value for 1 1.544
0.6475

n λ= = ≈ . 

 



In Stata, we have standard gamma density function gammap(a, b), and Gamma density 
function gammaden(a,b,g,x) with shape parameter a, scale parameter b, and location 
parameter g. In fact, gammaden(a,b,g,x)=gammap(a,(x-g)/b).  
 
so x=invgammap(a,p) should be equivalent as x=b*invgammap(a,p)+g. set g=0, 

1 1a
b θ

= =  

θ is the gamma parameter reported by Stata, and all this simply means 
( ) 1, ( )E x Var x b θ= = = . 

 
gen x4=0.6475*invgammap(1/0.6475, uniform()) 
sum x4, detail 

 
 

Simulate single risk continuous time duration data  
 
Recall the hazard rate function for transition to k is: 
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The survival function is  
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To simulate the continuous duration, we must take the inverse of survival function, which 
can be derived from the solution of (taking ( , ) 1k k kS x t u= − ) 
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where  is uniform distributed random variable.  ku
 
Assume weibull baseline hazard  
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 we get 
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a possible choice for shape and scale parameters can be 0.10, 0.90λ α= = .  
 
The continous_weibull.dta is simulated with scale parameter set to 1.  
 
Let’s have a look of the simulate_weibull.do file to see how to implement these formulas 
in Stata, both with duration generation and Gamma distributed unobserved heterogeneity 
simulation.  
 
simulate_weibull_do 
 
run  
stset t, failure(d) id(id) 
streg x y, d(w) frailty(gamma)  
to check the recovery of DGP parameters 
 
 
Simulate single risk discrete time duration data 
 
If we are willing to assume that the discrete time duration data arises from a underlying 
continuous time process, and by interval censoring to form a grouped hazard framework, 
we can easily simulate the discrete time duration data which can be used to estimate by 
cloglog.  
 
We need to set a piecewise constant baseline from the continuous time duration baseline 
chosen. IN this example, a continuous time Weibull distribution baseline is chosen.  
 
Recall that the weibull hazard rate for a given interval [d-1,d] is simply the definite 
integral of continuous Weibull baseline  
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with this we can easily calculate (in excel for example) the piecewise constant duration 
baseline: 
 
 
 
 
 



Period Baseline b(t) 
1 0 
2 -0.14379 
3 -0.19625 
4 -0.23026 
5 -0.25554 
6 -0.27568 
7 -0.29243 
8 -0.30677 
9 -0.3193 

10 -0.33044 
11 -0.34046 
12 -0.34956 

 
With this we can based on the complementary loglog function: 

( )'( 1 | 1) 1 exp exp( ( ) ln( ))tp t T t T t x b t αβ λ− < < > − = − − + +  
where the scale parameter is: 
ln( ) -2.072326584 when 0.9,  0.1αλ α= = λ =  
simulate the discrete time duration data with underlying Weibull baseline. We can also 
simulate with the Gamma distributed unobserved heterogeneity. 
 
simulate_discrete_weibull_with_uobs.do 
 
 
Simulate independent continuous time competing risks duration data 
 
To simulate a dataset with independent continuous time competing risks duration data is 
a simple matter of extension of single risk data simulation. The only difference is that one 
needs to simulate different underlying continuous time durations with the inverse 
function to survival function technique. Then the shortest underlying duration with 
transition should be the observed duration time and observed transition.  
 
To put in compact form:  
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simulate_competing_risk_weibull.do 
 
 
 
 
 



Simulate independent discrete time competing risks duration data 
 
The simulation with independent discrete time competing risks duration data is different 
than to simulate continuous time data. Recall that the discrete time grouped hazard model 
for competing risks is given by: 
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this is the event probability for give time interval[ . So the simulation is actually 
done in two steps: 

-1, ]t t

 
Step 1: simulate the transition probability that one event occurs. 
Step 2: given that one event occurs, simulate the probability that the event is k.  
 
simulate_competing_risk_discrete_weibull.do 
 
run exercise6-2.do file again to check with your simulated data.  
 
 
Above are examples showing basic ways to simulate some familiar duration data. Many 
advanced type data, with e.g. bivariate distributed unobserved heterogeneities in 
competing risks models, with timing-to-event type endogenous transitions can be 
simulated based on these examples, with much creative improvements of course.  
 
Simulation techniques can also be used after estimation of duration models. One can 
simulate durations based on estimated coefficients for the hazard rate models, to do 
model calibrations. Or one can do bootstrap style analysis for the interesting model 
parameters, especially for the NPMLE estimators, when the asymptotic distributional 
properties are unclear or unknown.  
 
 
 
 
 


