
Hour 4: Discrete time duration model, piecewise constant, 
complementary log-log estimation and model misspecification 
 
 
Although the time itself is continuous, in real life we seldom have the survival data in a 
continuous form. More often, we have data that comes in a discrete, or time interval style.  
 
It is important to understand how the discreteness stems from. One source of discreteness 
is due to the sampling practice, such as unemployment register data. Another source 
could be genuine discreteness of event, i.e. things just happen at certain point of time 
(exhaustion of unemployment benefits). We here will focus on the first source, in which 
the underlying process is continuous, while the data we work on is discrete due to 
sampling practice.  
 
It is better known as the grouped-hazard duration model. 
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With proportionality assumption, this can be further reduced to a complementary log-log 
form 

( )'( 1 | 1) 1 exp exp( )t tp t T t T t x β λ− < < > − = − − +  
 
Notice that the baseline tλ  has an additive form to structural covariates. Thus if the 
observational data is discrete, we can use flexible non-parametric specification for 
baseline, and estimate it as if they are covariates.  
 
Stata does not make an effort especially for discrete time duration analysis. Most of the 
commands for continuous time survival data work seemingly, but no guarantee for 
correctness of results.   
 
Exercise 4: discrete data with underlying Weibull distributed baseline. 
 
In this exercise, we are going to use a dataset (discrete_weibull.dta) generated with the 
same underlying Weibull baseline as in continous_weibull.dta, but we divide the duration 
into 12 periods.  
 
Period Baseline b(t) 

1 0 
2 -0.14379 
3 -0.19625 
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4 -0.23026 
5 -0.25554 
6 -0.27568 
7 -0.29243 
8 -0.30677 
9 -0.3193 

10 -0.33044 
11 -0.34046 
12 -0.34956 

 
Where b(t) is the log of integrated Weibull hazard 
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So in this case we have a so-called piecewise constant baseline, where baseline is 
constant within unit time intervals.  
 
Recall that the full Weibull hazard formulation is (with scale parameter) 

1( ) ( )exp( ' ) exp( ' )h t b t X t Xα αβ λ α β−= =  
And the discrete_weibull.dta is simulated with scale parameter set to 0.1, such that the 
duration would not be too short (otherwise we will have problem with episode splitting).  
Then the 1 1( ) ( )exp( ' ) exp( ' ) exp( ' ln( ))h t b t X t X t Xα α α αβ λ α β α β λ− −= = = + .  
 
The probability of transition (note, this is not the hazard rate, but probability!) in each 
interval [d-1, d] is thus: 

( )( 1 | 1) 1 exp exp( ' ( )dp d t d t d x b t constβ− < < > − = − − + +  
where the const is just the scaling factor  
ln( ) -2.072326584 when 0.9,  0.1αλ α= = λ = . 
 

1. open data file discrete_weibull.dta. 
2. describe the variables 
3. do a summarizing statistics 
 

We notice that there are 12 periods for duration variable t, so we need to define 12 
dummies for piecewise constant baseline. Each individual contribute different numbers of 
periods to the overall durations. Thus we need to split each individual’s duration spell to 
subspells, so that they sum up to the original total length. Then for each subspell we 
define the corresponding dummy to reflect which subspell/period this is referring to. 
Each subspell will have the censoring indicator to be 0, meaning censored, except the last 
subspell for individual will retain its original censoring status.  
 

4. episode splitting by expand: expand t; (duplicate each observation by t, the total 
duration period. Thus each subobservation generated reflects one period of the 
original duration, and they sum up to original t. 

 

 2



5. let’s have a look of data at this stage. You see that every variable is duplicated, 
and the censoring indicator is 1 for each. We will have to correct that.  
sort id; 
by id: replace d=0 if _n!=_N; /* Note the use of index variable */ 
 

6. we will need to define each subspell’s id.  
by id: gen epid=_n; 
note that epid[_n]-epid[_n-1]=1 is the exact length of subspell. 

7. list some variables to check the data now. 
 
8. Since we are assuming that for each subspell the duration baseline is constant 

(piecewise constant) we will have to define a set of dummies to indicate which 
period the subspell actually is corresponding to. This can be done in several ways, 
the easiest is however 
tabulate epid, gen(dur) 
this command runs the frequency statistics of epid, which is the id for subspells, 
for each individual. Tabulate can at the same time create a set of dummies which 
are corresponding to the actual subspell in total duration period. This can be 
checked by list some variables: list id d epid dur1-dur12 in 1/5; 
 

9. now that we have the data ready, we can do some estimation. Note here, we 
haven’t used the stset command. This is because we are not going to use Stata’s st 
estimation command. Due to the complementary log-log form of grouped hazard  
formulation, it is straight forward to estimate with the cloglog command, treating 
censoring indicator d as binary response variable.  
cloglog depvar indepvar, options; 
here: 
cloglog d  x y dur2-dur12; /* note here we drop dur1 to estimate with a constant, 
then the constant is in fact sum of baseline hazard of dur1 which is equal to 0 , 
and the scale factor */ 
 
alternatively suppress the constant (which means scale the dur1-dur12), 
cloglog d x y dur1-dur12, noconstant 
 
we can see that the coefficients for x and y are not bad, but the piecewise constant 
duration dummies are all insignificant. This could be due to the fact that we have 
a handful observations for each dur# dummy. But we observe some falling 
tendency from dur1-dur12, which indicates the falling baseline of Weibull.  
 

10. What if we do this with logit, that is we simplify the duration model, and treat the 
censoring indicator d as binary response variable and do 
logit d x y dur1-dur12, noconstant 
This give pretty biased estimates.  

 
11. what if we discard the discreteness of data and treat the duration as continuous 

when in fact it is discrete?  
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stset epid, id(id) failure(d); 
(optionally do some statistics with the data) 
 

      suppose we want fit the data with stcox? 
stcox x y, nohr; 
or what if we fit it with continuous Weibull? 
streg x y, dist(w) nohr; 

 
You can see that the results are pretty much nonsense. This should draw your attention 
that, when empirical data present some discreteness feature, either due to sampling 
practice, or due to the nature of data generating process, fitting the data with an arbitrary 
distribution model might result in severe bias in estimates.  
 
Røed and Zhang (2002) has demonstrated that even though the underlying DGP is pure 
continuous, if the data observed is discrete, fitting with a theoretically correct model will 
still produce non- neglectable bias, which is termed “time aggregation bias”. So one must 
be careful before make any assumption of duration dependence.  
 
     12. fitting data without episode splitting (expand command) yields exact same (wrong) 
results.  


