
A Note on Estimating a Competing Risk Model

with Transition Specific Unobserved

Heterogeneity

Simen Gaure
The Frisch Centre for Economic Research

Scientific Computing Group, USIT, University of Oslo

14/12-2006

1 Introduction

This note is about estimating fairly general competing risk models. It describes
the ideas and functionality of an estimation program in production use at the
Frisch Centre.

Say we have N individuals who may be in S different states. From each state
they may make one of T different transits and possibly end up in a different
state.

A typical example is from labour market modelling, where unemployed in-
dividuals may transit to either a labour market programme or to job. An in-
divdual on a labour market programme (with exogeneously determined length)
may transit only to a job. In this example the states are “unemployed” and
“on programme” whereas the transits are “to job” and “to programme”. For
an individual in state “on programme”, the only legal transit is “to job”. I.e.
there is a single risk for these.

We will use this example now and then, though of course the estimation
program works equally well if e.g. the individuals are cancer patients and the
transitions are “to medical treatment A”, “to cured” and “to the graveyard”.

Associated with a transition t is an individual hazard rate θ which depends
on some covariates Xi (with i = 1..N). We model this hazard as

θi = eXi·β

(where β is a parameter vector and · is the inner product).
We may use a different set of covariates for different transitions. We want

to estimate the vector β with the maximum likelihood estimator, but there are
some further complications.

To compute the likelihood Li(Xi, β) of a particular individual transit we
must integrate the survival rate over the period in the current state and multiply

1

http://www.frisch.uio.no
http://www.hpc.uio.no/hpc/Info/


with the hazard rate at the end of the period. The form of the integrated
survival depends on how we model the duration time. In particular we may use
continuous duration time, or discrete duration time.

Some of the covariates Xi may depend on the duration that has been spent
in the state, this means that to avoid bias in β we must also model unobserved
heterogeneity. Following Lindsay, and Heckman and Singer, we use a discrete
heterogeneity distribution and we allow for transition specific heterogeneity.
I.e. we have probabilities (masspoints) p = (pi)K

i=1 with
∑

pi = 1 and vectors
v = (vt)T

t=1 of length K for each transition t. I.e. so that vtj is the heteroge-
neous intercept for masspoint j for transition t. Let also v·j denote the other
projection, i.e. the location vector of length T : v·j = (v1j , v2j , . . . , vTj).

These things enter the hazard as

θitj = eXi·β+vtj

and we have to integrate both the survival rate over the period, and the het-
erogeneity over the heterogeneity distribution, so that our individual likelihood
becomes

L(Xi, β,K, v, p) =
K∑

j=1

pjΘ(Xi, β, v·j).

Where Θ is the likelihood conditional on a particular masspoint.
The vtj enters as a random intercept, so we have no implicit intercept in β.
Note that there are no other functional forms in our likelihood, in particular

even with continuous duration time, the hazard rate is considered to be piecewise
constant, though with completely flexible interval lengths.

2 Overall strategy

Our individual likelihoods from the previous section must be multiplied over
the individuals to get a function of the parameters β and our heterogeneity
distribution. We take the logarithm to get the following log-likelihood

L(β, K, v, p) =
N∑

i=1

log L(Xi, β,K, v, p).

Our task is to maximize this function with respect to all its arguments
subject to the constraint K ≤ N (this is from Lindsay). Fortunately, Heckman
and Singer has taken care of some of it. We may handle K in the following way.

1. Start with K = 1, maximize L(β, K, v, p) w.r.t. (β, v, p).

2. Now, increase K by 1, keep β fixed and search for a better likelihood
L(β, K, v, p) by varying (v, p).

3. Do a maximization of L(β, K, v, p) w.r.t (β, v, p), using (β, v, p) from the
previous step as an initial value. If the new likelihood is an improvement
go to step 2, otherwise terminate.

2



Some words are emphasized above, in step 2, we need to specify what we
mean by better. In step 3 we need to specify what we mean by improvement.
We also need to decide how to search in step 2, and how to maximize in step 3.
When we have finished, we need to decide which model (i.e. which K) to use.

Note that the algorithm given here is slightly different from Heckman and
Singer’s. In step 2, we could terminate the algorithm if we couldn’t improve
the likelihood (in the sense that a certain directional derivative can’t be made
positive), but this is conditional on the fixed β. There is a chance that step
3 may actually find a better likelihood (by changing β slightly), even if step 2
can’t do it.

2.1 How we search

In step 2 we need to search for a new masspoint. Following Heckman and Singer
we do this as follows:

Let p = (p1, . . . , pK) and v = (vtk) be the old probabilities and location
points. Let pK+1 = 0 and let w be a T -dimensional vector. Let

M(w, ρ) = L(β, K + 1, [vw], ((1− ρ)p, ρ))

where [vw] is the matrix v extended (by concatenation) with the vector w. Form
the directional derivative

G(w) = lim
ρ→0

M(w, ρ)−M(w, 0)
ρ

.

We must search for a T -dimensional vector w which makes G(w) positive.
There are several ways to do this, e.g. local maximization, grid search, adaptive
grid search, etc. We have picked simulated annealing as implemented by Goffe
et al. For our purposes we have usually limited each coordinate v to the interval
[−5, 1].

As we get more points in our heterogeneity distribution, we replace the fixed
search inverval by [E(v)− 4σ(v), E(v) + 4σ(v)].

Note that we do not maximize G(w), we stop as soon as G(w) becomes
positive. Once we have found such a w we use it as the new location point
v·K+1, we set ρ = 10−4 and use ((1− ρ)p, ρ) as the new probabilities.

If we do not find a w with G(w) > 0, we use the best one, i.e. we have done
a global maximization of G(w) and use the w which maximizes G(w).

2.2 How we maximize

The maximization in step 1 and 3, being likelihood maximization, should really
be a global maximization. With N ≈ 106, T = 7, K ≈ 50 and β ∈ R3000 this
is beyond our current computational capabilities. We have resorted to local
maximization, more specifically a combination of BFGS and Fisher scoring (i.e.
Newton’s method with the Hessian replaced by the Fisher matrix).

3



Moreover, we have splitted the maximization into two parts. We have seen
that often the maximization leads to quite small changes in β, so we first max-
imize only with respect to (v, p), then w.r.t. (β, v, p).

We typically combine BFGS and Fisher scoring as follows:

a. Set b to 50. Set n to 30.

b. Do up to b iterations of BFGS.

c. Do up to n Newton iterations. If the resulting gradient is smaller than
10−9, terminate the algorithm with success. If n ≥ 100, then terminate
with failure, otherwise increase b by 100, n by 10 and go to step b.

It turns out that both BFGS and Newton may run into problems, but the
above combination often gets around problematic regions. The number of iter-
ations and the convergence criterion may be adjusted.

2.3 When to stop, what to do

If the log-likelihood does not improve by at least 0.01 we do not consider it an
improvement.

When our algorithm has terminated there are several model candidates. We
may pick the one with the highest likelihood, we may pick the one with the
highest AIC. If using AIC as a criterion it would be tempting to terminate the
algorithm when the AIC does not improve, but we don’t recommend that. The
reason is that the AIC may improve in later steps.

2.4 Further complications

Sometimes, during maximization, the heterogeneity distribution ends up as de-
generate. I.e. one or more probabilities are estimated as zero, or some location
vectors are equal (or close enough to be considered equal). In this case, we
remove the superfluous point(s) from the distribution and re-estimate.

To this end, a probability of less than 10−6 is considered to be zero. Two
location vectors v·i and v·j are considered to be equal if ‖v·i − v·j‖∞ < 0.1.

There are more complications. In our example, some people never enter a
programme, their only transition is to “employed”. This means that techni-
cally, the risk that they enter a programme is zero, i.e. a defective risk. The
maximization algorithm may sometimes estimate a very large negative value in
this case. E.g. v26 is very negative. Then ev26 is numerically equal to zero and
we are not able to compute meaningful gradients, nor refine v26. The Fisher
matrix becomes degenerate, and we can’t invert it to obtain standard errors for
any parameters. In this case we mark v26 as −∞ and leave it as a constant in
the estimation.

Our complications do far from end here. In particular for discrete durations
we have occasional numerical problems. I.e. we have expressions like 1 − e−ex

and their derivatives. For certain arguments we then use a Taylor approximation

4



to alleviate numerical difficulties. Also, for some expressions it’s more accurate
to work directly with their logarithms.

There’s also a trick which has proved to be very useful. During estimation,
we sometimes encounter values of parameters which makes the likelihood of some
individuals very close to zero, so that their logarithm becomes very negative.
It will typically be hard to compute the gradient with any reasonable accuracy
for these individuals. We have solved this problem by setting the log-likelihood
for these individuals to a large negative number, whereas their gradient is set
to zero. This introduces a discontinuity in the gradient, but it turns out that
the maximization algorithm most often moves away from such regions, relying
on the gradient contribution from the “sane” individuals.

3 Duration dependence and implicit dummies

We have briefly mentioned duration dependence. I.e. the hazard rate may
depend on how long the individual has been in the current state. In the literature
one sees various functional forms of duration dependence. One popular form has
been the Weibull distribution, and there are other forms, decreasing, increasing
and with various regular humps and bumps.

We have used no such functional form. We depend on estimating duration
dependence with dummy variables. E.g. for a dataset with monthly data with
durations up to 5 years, we use 60 dummies, one for each month, to estimate
duration dependence. In some applications we get collections of over 100 such
dummies. Therefore we have optimized particularly for long strings of dummies.
The user may e.g. specify an ordinal variable “dur” as implicit dummy from 1
to 60 with reference 13. “dur” should then have integer values between 1 and 60
and the estimation program will create 59 dummies (“dur1” – “dur60”, except
the reference “dur13”) corresponding to each value of “dur”. This is not merely
a convenience for the user, the fact that no more than 1 of the 59 dummies
is non-zero at any time, is actively used to speed up the execution, effectively
treating the string of dummies as one variable (which it really is), both with
respect to speed and space.

Since we have this flexible (though piecewise constant) duration dependence,
it’s possible to track duration dependence which e.g. stems from pure policy
decisions, e.g. we may see bumps prior to (partial) benefit exhaustion at 18 and
36 months. Implicit dummies may of course also be used to track calendar time
dependence, e.g. the business cycle.

Note that the duration dummies will enter the likelihood just like any other
covariate, this means that we use a model which is known as “proportional
hazard”, or, taking into account the heterogeneity distribution, “mixed propor-
tional hazard”.

Note also that with this many parameters we require a lot of data to get
sensible standard errors. Since we typically use these methods for analyzing
register data this is not a big problem for us.

5



4 Random Coefficients

Just like we modeled the heterogeneity with a discrete distribution, we may
estimate random coefficients. From above, our individual hazard

θitj = eXi·β+vtj

is replaced by
θitj = eXi·β+αjri+vtj

where ri is some covariate and αj is a random coefficient. Note that the unob-
served heterogeneity is merely a special case of a random coefficient correspond-
ing to a covariate which is constantly equal to 1.

5 Linear Predictors

When unemployed people get a job, it’s interesting to analyze how good a job
it is, e.g. by looking at the wage. We update our likelihood to include a linear
predictor for the (log)wage e.g. like

Yi = Xi · γ + v +N (0, σ)

where Yi is a covariate (the (log)wage), Xi are covariates (possibly different
from the ones occuring in the hazard), γ is a set of parameters to estimate, v
is heterogeneity and N (0, σ) is an error term normalized to have mean 0. The
individual likelihood is

φij = Nσ(Yi − (Xi · γ + vj))

where
Nσ(x) =

1
σ
√

2π
e−

x2

2σ2

is the normal density with mean 0. This likelihood φij is multiplied with the
hazard likelihood Θ in 1. We get parameters (γ, σ, vj) to maximize in addition
to the ones from the hazard.

Interestingely, we have seen that with a linear predictor we benefit from
changing our maximization algorithm slightly. We still do the same search for a
new point, but we do not do a separate maximization over the distribution (as
mentioned in 2.2), instead we jump right to a maximization of all the parameters.
This has, in our datasets, prevented the algorithm from repeatedly converging
into a degenerate pit.

6 The integrated hazard

As mentioned above, we can either use continuous time, in which the duration
until transit is exactly recorded, or discrete time where time is divided into
intervals of equal length and we merely record in which interval the transit
occurs.

6



6.1 Discrete time

We organize our data so that all covariates are constant within a unit time pe-
riod. With time-varying covariates we therefore may have several “observations”
with no transit, before the observation with the transit.

With discrete time we need to compute the probability that the observed
outcome occured within the observed interval. The probability Ps of survival
through a period is the product integral of the hazard:

Ps = exp(−
∑

t=1..T

θt)

where θt is the hazard of doing transition t. In case the individual did not make
a transition within a period, Ps will be the likelihood for this period.

In the case that a t-transition was made, the likelihood will be

Pt = (1− Ps)
θt∑
u θu

.

I.e. the probability of non-survival times the probability of t-transition condi-
tional that a transition was made.

6.2 Continuous time

Here we also organize our data into periods with constant covariates. The
periods may be of arbitrary and different lengths. The likelihood for a period
of length ` can be computed as: Survival:

Ps = exp(−`
∑

t

θt)

and t-transition:
Pt = Psθt

This is a density, rather than a probability.

7 Implementation

The estimation as described above is quite time-consuming. Although it is pos-
sible to write down the likelihood and feed it to some general purpose statistical
package, this has not proven useful for the datasets we have. We have resorted
to write the procedure in the de facto standard language for high performance
computations, FORTRAN 90. We have used MPI to do the computations in
parallel (over the dataset).

Since we want to have an easy way to specify a particular problem, we
have written a preprocessor in perl, which takes a human-writeable specification
and transforms it into problem-specific fortran code which is included in the

7

http://www-unix.mcs.anl.gov/mpi/
http://www.perl.org


estimation program. This has the additional benefit that many loop-limits in
the program are compile-time constants, this aids optimization.

Since Fortran hardly can be said to be a rational language for data-manipulation,
we have also written a post-processing procedure in R. This takes care of com-
puting various statistics from the Fisher matrix.

In addition we have written a web-frontend in PHP to submit problems to
the Titan cluster at the University of Oslo. (A cluster which the Frisch Centre
has a share in).

7.1 Speed

As mentioned above, the estimation procedure is time-consuming, in particular
with large datasets and large sets of parameters. In addition to coarse grain
parallellism and implicit dummies, we have done quite detailed loop-level op-
timization. E.g. we try to ensure that all time-consuming loops are executed
in the right order (forwards in memory) and that cache-lines are fully utilized
before wasted. But, the single most important thing is to use a good blas and
lapack. This also holds for the R post-processing routine.

As an example of this, our Newton step uses the Fisher matrix, which can
be computed from the outer product of the individual gradients ∇Li as∑

i

(∇Li)(∇Li)′.

Doing this without further thought will be next to disastrous when the vector
length becomes long (i.e. so long that the Fisher matrix no longer fits in the
cache). To speed up this critical process we collect ∇Li for 32–128 individuals at
a time (depending on the machine architecture), and compute their contribution
to the Fisher matrix with the blas level 3 routine “dsyrk”. With a vector length
of 3000, the speed difference between a good and a poor blas may be an order
of magnitude or more.

8

http://www.r-project.org
http://www.php.net
http://titan.uio.no
http://en.wikipedia.org/wiki/CPU_Cache
http://www.netlib.org/blas/faq.html
http://www.netlib.org/lapack/

	Introduction
	Overall strategy
	How we search
	How we maximize
	When to stop, what to do
	Further complications

	Duration dependence and implicit dummies
	Random Coefficients
	Linear Predictors
	The integrated hazard
	Discrete time
	Continuous time

	Implementation
	Speed


