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Description: This is a brief and informal description of a Monte Carlo simulation of a case with two
treatment effects and IV-estimation. The exercise is referred to in the paper "The effects of
vocational rehabilitation". In this note, we first present the key features of the
experiment/simulation. The details (e.g., regarding specific distributional assumptions) are laid out in
the STATA code displayed at the end of this document.

Setting: We study the following setting:

e There are 50,000 “agents” distributed between 500 different “treatment environments”.
Agents are under risk for two different treatments, p1 and p2.

e We study the effect of these treatments on some outcome y = x + alfa + b1*pl + b2*p2 + ¢,
where x is an individual observable characteristic, alfa is an individual unobserved
characteristic. bl and b2 are the parameters of interest. e is a normal distributed error term

e Treatment is allocated in the following manner:
0 First we construct a latent participation propensity for treatment 1 and 2
= |atentl = x + alfa + epsl + phil_true
= |atent2 = x + alfa + eps2 + phi2_true

where epsl and eps2 are individual random variables (uncorrelated) and phil_true
and phi2_true are the true (unobserved) parameters characterizing the influence of
the treatment environments.

0 Phil_true and Phi2_true are allowed to be correlated, and in our experiment they
are negatively correlated such that treatment environments pushing hard for
treatment 1 typically push less for treatment 2.

0 An agent participates in treatment s if this treatment is the one with the highest
latent propensity and this propensity is higher than a cut-off level.

o Heterogeneous effects: the effect of a treatment is heterogeneous across agents, and these
effects (b1 and b2) are negatively correlated, with unconditional means equal to 1 and 2,
respectively.

e Non-compliers (never-takers): The quartile with the lowest effect of treatment s will never
participate in treatment s (regardless of the latent propensities).

e Since the two effects are negatively correlated the typical situation is that there is very little
overlap between the two groups of never-takers. In other words, those benefiting the most
from treatment 1 will often be never-takers of treatment 2, and vice versa.



e Since the unobserved variable alfa enters both in the outcome and participation equations,
estimation using OLS* would surely give biased results. We thus need an instrumental
variable for p1 and p2. The variables we want to use are the treatment environments’
contribution to the two treatment propensities. However, these variables (phil_true and
phi2_true) are unobserved.

e Inline with the paper, we thus construct the estimates for phil_true and phi2_true using a
leave-out mean of the treatment participation of the other agents within the same
treatment environment.

0 First we run a regression to control for x
= pl=cx+el
= p2=cx+e2

0 Then we use the estimated error terms el and e2 in the following way: Within each
treatment environment we compute the mean of el and e2 and then remove agent i
from the mean of "his" office. This is our instrumental variables phil and phi2.

e Finally we estimate the model using 2SLS. The model has three equations:
0 pl="fx+fphil + fyphi2+residual
0 p2=gix+guphil + g,phi2+residual
0 y=x+blpl_hat+b2 p2_hat+residual
where pl_hat and p2_hat are the predictions from the two first equations.

e We then compare the estimated coefficients for b1l and b2 to the mean of the true b1 and b2
in the population of compliers for each respective treatment, and find that the model is able
to identify the mean of the true effect in the complier groups.

RESULTS

We implement 1000 repetitions using the specifications as below. There are 50 000 agents and 500
treatment environments in each trial. The true average effects of treatment 1 and treatment 2 in the
two complier groups are denoted mcb1 and mcb2, respectively. The estimated effects are denoted
betal and beta2. As one can see, on average they are as good as equal. Note also that the standard
errors seem fairly correct by comparing the standard deviation of betal and beta2 to the man of the
standard error sel and sel.

' The equation would then be: y = x+ blpl + b2p2



Variable Ch= Mean 5td. Dev. Min Ma=x

i 50000 25000.5 14433.9 1 50000

office 50000 249,51 144.3388 0 S00

J 50000 50.49802 28.86636 1 100

n 50000 99.99604 LA449587 1 100

betal 1000 1.104893 .07397249 .B55T7182 1.336544

betal 1000 2.105409 .0751176 1.885114 2.364618

zel 1000 .0734086 .0051149 .0594072 .0B95T48

=za2 1000 .0732459 .0D49674 .0594209 .0948801

mchl 1000 1.105917 001154 1.1012259 1.109739

mch2 1000 2.105503 .0011671 2.102338 2.109526
STATA CODE

*Monte-Carlo simulation for treatment-effects using IV
clear
set obs 50000 /* Number of individuals in simulations*/

* Just some infrastructure

gi =1

replace i = sum(i)

gen office = floor(i/100) /* Social security offices for whom the instrumental variable is to
be constructed*/

gen j =1

bys office: replace j = sum(j)

bys office: egen n = max(jJ) /* Number of participants per office*/

gen betal
gen beta2
gen sel = .
gen se2 = .
gen mchl
gen mch2

* The loop, choose number of rounds

forvalues k = 1(1)100{

* This step creates the "true" practice style of each office. They are drawn from a bivariate
normal distribution

* and they can be correlated. In this baseline set-up the true office styles are negatively
correlated such that

* if an office push hard for treatment 1 they tend to push less for treatment 2

matrix G = (1, -0.5\ -0.5,1)

matrix g = (0,0)

matrix s = (1, 1)

drawnorm vl v2 , means(g) sds(s) corr(G)
replace vl = ifji=1

replace v2 = ifji=1

/*

gen vl= rnormal(0,1) if j ==
gen v2= rnormal(0,1) if
*/

bys office: egen phil_true = max(vl)
bys office: egen phi2_true = max(v2)

* Individual participation
gen alfa = rnormal(0,1) /* person heterogeneity, unobserved to econometrician*/
gen epsl = rnormal(0,1) /* random component treatment 1*/



gen eps2 = rnormal(0,1) /* random component treatment 2*/
gen x = rnormal(0,1) /* observed covariate*/

* True treatment effects

* Again we use a bivariat normal distribution with negatively correlated effects
matrix C = (1, -0.5 \ -0.5,1)

matrix m = (1,2)

matrix sd = (0.25, 0.25)

drawnorm bl b2, means(m) sds(sd) corr(C)

* We define the compliers to the percentiles with the highest true effect of the treatment
quietly summ bl, det

gen complierl = 1

replace complierl=0 if bl < r(p25)

quietly summ b2, det

gen complier2 =1

replace complier2=0 if b2 < r(p25)

* This is the latent probability of participation in treatment 1 and 2
gen latentl x+ alfa + epsl + phil_true
gen latent2 x+ alfa + eps2 + phi2_true

* A person participates in treatment 1 if: the latentl index exceeds 0.4 and latentl > latent2
gen pl =
gen p2 =
replace pl
replace p2

1 if latentl > latent2 & latentl > 0.4
1 if latentl < latent2 & latent2 > 0.4

* The non-compliers do not participate anyhow
replace pl O if complierl == 0
replace p2 0 if complier2 ==

* Here we find the mean true effect for the compliers
quietly summ bl if complierl == 1

replace mcbl = r(mean) if “k* == i
quietly summ b2 if complier2 ==
replace mcb2 = r(mean) if “k* == i

tab pl p2 /* A table of participants*/
drop epsl eps2

* The outcome equation
gen y = x + alfa + bl*pl + b2*p2 + rnormal(0,1)

* Constructing the Instrumental variables

quietly reg pl x

predict fitl

gen epsl = pl-fitl

bys office: egen mepsl = mean(epsl)

gen phil = (n*mepsl-epsl)/(n-1) /* A leave-out mean*/

quietly reg p2 x

predict fit2

gen eps2 = p2-fit2

bys office: egen meps2 = mean(eps2)

gen phi2 = (n*meps2-eps2)/(n-1) /* A leave-out mean*/

* Simultaneous model

quietly ivregress 2sls y x (pl p2 = phil phi2)
replace betal = _b[pl] if “k* ==

replace beta2 = _b[p2] if “k* == i

replace sel = _se[pl] if k" == 1

replace se2 = _se[p2] if k" == 1

keep beta* se* j office n i mcbl mcb2

}

summ



